
RoboSub



Advisors & Members

Members: Victor Solis, David Camacho, Hector Mora-Silva, Roberto 
Hernandez, Bart Rando, Andrew Huesser, Bailey Canham, Milca Ucelo 
Paiz, Thomas Benson, Brandon Cao

Advisor: Richard Cross



RoboSub Competition

• Hosted every year by RoboNation

• International Competition

• 39 in-person teams in 2022

• More online

• At University of Maryland

• Different theme every year

Goal: Design, build, and test an Autonomous 
Underwater Vehicle (AUV) that will attempt to 
complete a series of tasks.



Team 
Breakdown

Mechanical & 
Electrical Engineer 
Team

7 
Mechanical 
Engineers

3 Electrical 
Engineers

Computer Science
10 
Software 
Engineers



Lanturn

• Previous Year(s)
• Not Manufactured

• Untested Software

• Picking off where they left off



Software 
Requirements

• Safety Requirements

• 100% Autonomous

• Artificial Intelligence

• Decision Making

• Navigation

• Object Detection

• Sensors 

• Data Acquisition

• Actuator Control

• Stabilization

• Task Execution



Computer Science Team Breakdown

AUTONOMY CONTROLS NAVIGATION COMPUTER 
VISION



Computer Science Team

• Designing Based on Last year's competition Obstacles

• Mission Handbook released around March

• Once 2023 Mission Handbook is released, make adjustments to fit the 
requirements



RoboSub Club



Competition Map



Tasks



Start: 
Choose Gate



Follow Path



Touch Buoy



Collecting 
Bins



Torpedoes



Cash or 
Smash -
Octagon



Autonomy
Hector Mora-Silva, Roberto Hernandez



o Objective:

o Implement and design the overall software structure for the AUV

o Receive and provide data to all systems

o Decisions and give instructions for the required tasks based on

the current state

o States Overview
o State Zero
o 6 main tasks



ROS and SMACH
o Robot Operating System (ROS):

o Libraries and tools to help with the development of
robot applications

o Publishers/Subscribers
o A Publisher continually broadcasts a message
o A Subscriber receives these messages

o State Machine (Smach): A package within ROS
o ROS-independent Python library
o Hierarchical state machines
o Mainly to execute complex plans
o The state machine on the right is a flow chart that shows 

different states with given outcomes that determine how the 
states transition



State Machine Viewer

o GUI that shows the state 
machines

o Possible transitions between 
states

o Currently active state

o Values of user data that is 
passed around between states







24

Transition From Ros1 to Ros2

Started with ROS1 due to our current hardware. Unfortunately, the target operating system, 
newer software and adding other components started to be limited, so moving to a newer 
release from ROS2 was decided. Which brings advantages like using Behavior Trees instead of 
Finite State Machines.



25

Transition Finite State Machine to 
Behavior Trees

• Visual Oriented
• Parrel task/function/states
• Goal Oriented vs Decision Oriented
• Higher Flexibility, more modular =easier to make changes
• Easier to reach functions/actions from another node directly

Focal Fossal





Basic sequence with Boolean 'success' for Nodes, next is implement logic via Groot and 
code hardware data .



Computer Vision
Bailey Canham, Milca Ucelo



Overall Team Goal

• Our goal is to be able to identify 
important competition objects with a 70% 
accuracy

• We also would like to extrapolate as 
much information as possible from the 
identified objects, such as being able to tell how 
far the robot must rotate to be perpendicular to 
the object

• Additionally, we plan to utilize 
Google CoLab and evaluate how effective this 
tool is



First Step: 
Exploration

• We wanted to get a better 
idea of how computer vision 
programs work and how to 
test them on Google CoLab

• We used a pre-trained 
computer vision program in 
order to get comfortable with 
how to use and evaluate 
these programs.



Second Step: Evaluation

• We wanted to see how much progress the 
previous senior design team made in 
computer vision

• After testing the program, we learned that 
their computer vision program was only able 
to recognize the letter ‘A’

• Therefore, we needed to train our own model



Third Step: Prepare

• To train, we need to have an abundance of 
photos of the objects we wished to recognize, so 
we took over 500 photos of the objects we had 
available: The Badge Buoy and the Prequel Gate

• We then had to label each image using the 
program LabelIMG

• This produced a txt file that related to each 
photo



Fourth Step: Train

• We created the other needed files (obj.data, 
obj.names, yolov4.cfg, train.txt)

• Our first training attempt lasted 5 hours and got 
through around 500 iterations

• Google CoLab then kicked us out for using too 
many resources

• However, we were able to continue the training 
process once we were allowed access again and 
trained up to 1000 iterations



Fifth Step: Test

• Using our training, we tested other images of 
the Badge Buoy and the Prequel Gate

• The model was able to identify the Badge 
Buoy consistently, no matter orientation or 
cropping

• The model had a harder time identifying the 
Prequel Gate, but was still overall successful



Next Steps

• We will continue to improve our computer 
vision model to increase accuracy

• We will start to explore avenues of how to 
increase information flow between the 
computer vision system and the navigation 
system



Control Systems
BART RANDO / ANDREW HEUSSER



Initial Goals

Organize the existing 
code base into an Object 
Oriented design

1

Create modular 
classes for each distinct 
control system to simplify 
future expansions of the 
code base

2

Create new classes to
support sensors which 
have not yet been 
implemented (VN-100, 
DVL, Hydrophones, Sonar)

3

Deploy, Test, and Refine 
the code to maximize 
accuracy and efficiency

4



Where we began & Initial Difficulties

➢ The IMU (Inertial Measurement Unit) is the most vital sensor of all the control 
systems. This year we plan to upgrade the IMU from the Adafruit BNO055 to the 
Vector Nav VN-100.

➢ Our first goal was to write a working class that would allow our Teensy 
microcontroller to interface with the VN-100

➢ Since the VN-100 is extremely advanced and completely different from the 
BN0055, none of the previously written code is compatible with it.

➢ Vector Nav also closely controls the distribution of their proprietary libraries and 
instructions.

➢ The VN-100 is expensive and unique, so there isn't a lot of documentation freely 
available explaining the process as to how to implement it, and we need to be 
extremely careful in handling and wiring it, since any mistake could be very costly.

➢ Testing code for the VN-100 is not possible through simulation. The VN-100 must 
be physically connected to the Teensy for us to test if our code is working properly.

➢ The VN-100 was unused and has never been connected to a Teensy by anyone at 
CSULA previously. Nor was any printed documentation included with the sensor.



STEPS INVOLVED IN TRANSITIONING TO THE

VN-100

o We needed to file an application get approved by Vector Nav to gain access 
to their proprietary libraries and control software

o We needed to modify the Vector Nav “Rugged External Connector” cable 
by adding a quick disconnect plug so we could attach it to the Teensy 
microcontroller, as well as to the control software as needed

o We needed to solder pins to the teensy board and assemble a breakout 
board to be able to connect and test various sensors during the 
development and testing phases of programming

o We needed to write a modular class specifically for the VN-100 that 
communicates through the UART communications format



Vector Nav Control Software
Sensor Position Visualization



Vector Nav Control Software
Real Time Data and Configuration



Modifying the VN-100 Connecter cable with 
an intermediate quick disconnect plug



Finished and Tested Connector Cable



Soldering pins and assembling the 
breakout board for quick prototyping
on the Teensy Microcontroller



CURRENT DIFFICULTIES
➢ Although we are currently working on a modular 

class for the VN-100. Most instructions from Vector 
Nav are specifically written for SPI communication 
formats and not UART.

➢ This is because other versions of the VN-100 are 
capable of SPI, but the "rugged external connector" 
restricts access to the necessary pins required for 
communicating through SPI.

➢ As such we will need to write specific UART 
reading and parsing methods into the modular class 
we are currently working on, before we can even 
begin to communicate with the sensor.



• Finish writing and testing the UART based class for the VN-100Finish

• Create additional modular classes for existing sensors and control 
systemsCreate

• Collaborate with EE and ME students to begin developing classes 
for new systems that are being developed (DVL, hydrophones, 
Sonar)

Collaborate

• Once a working prototype submarine is completed, deploy and 
test our code for proper functionality. Rewrite and correct code as 
necessary.

Deploy and test

Future Goals



Sensors to be implemented

Name: Teledyne Pathfinder 
DVL

Details:

o Tracking Translational 
Movement

o Depth

o Serial Connection

Name: AS-1Hydrophones

Details:

o Angle to underwater 
Pinger relative to front of 
sub

o Reading from Amplifier

o Array of Hydrophones 
connected to amplifier

o Analog Connection

Name: VectorNav - 100 IMU

Details:

o Pitch, Yaw, Roll of sub

o C++ library

o UART Connection

Name: Blue Robotics Ping 
Sonar

Details:

o Large object detection

o Arduino Library / Python

o Analog Connection



Navigation Team

Brandon Cao, Thomas Benson



Underwater 
S.L.A.M.

● Two Key Parts:
○ Localization
○ Mapping

● Produced strictly through sensor 
data

● Problem:
○ Noise corruption in data



Localization

● Receive data from sensors 
through ROS nodes/topics.

● Process the data and publish it to 
the entire system.

● Use accelerometer data to 
calculate displacement.

● Minimize noise and error 
propagation.



Simulation 
Environment

● Need a test environment
● ROS Gazebo

○ Open Source 3D Robotics 
Simulator

● Arduino + IMU
○ Platform.IO



Remaining 
Tasks

● More Sensors
○ Barometer
○ Sonar
○ Hydrophones

● Mapping Software
○ Explore environment and build 

a map using sensors.
● Underwater Testing


