RoboSub

Advisors & Members

Members: Victor Solis, David Camacho, Hector Mora-Silva, Roberto

Hernandez, Bart Rando, Andrew Huesser, Bailey Canham, Milca Ucelo
Paiz, Thomas Benson, Brandon Cao

Advisor: Richard Cross

(7r o\

RoboSub Competition ch

* Hosted every year by RoboNation

* International Competition
* 39 in-person teamsin 2022

* More online
e At University of Maryland

* Different theme every year

Goal: DeS|gn, bL“Id’ and test an Autonomous The 2022 RoboSub Competition i(s)ff;pste?ﬁyRTzoNatio:,(g]s:;laboration with the United States
Underwater Vehicle (AUV) that will attempt to
complete a series of tasks.

= Team

Breakdown

Mechanical &
Electrical Engineer
Team

Computer Science

7
Mechanical
Engineers

3 Electrical
Engineers

10
Software
Engineers

Lanturn

* Previous Year(s)
Not Manufactured
Untested Software
Picking off where they left off

» Safety Requirements
* 100% Autonomous

* Artificial Intelligence
* Decision Making
* Navigation
* Object Detection

* Sensors
* Data Acquisition

e Actuator Control
e Stabilization
e Task Execution

Computer Science Team Breakdown

B

AUTONOMY CONTROLS NAVIGATION COMPUTER
VISION

Computer Science Team

* Designing Based on Last year's competition Obstacles
* Mission Handbook released around March

* Once 2023 Mission Handbook is released, make adjustments to fit the
requirements

RoboSub Club

Two Submarines are allowed
Senior Design RoboSub

Club RoboSub

Intervehicle Communication

Points Based on Complexity of Communication

Competition Map

D

le= ~40ft (12.2m) —T

Key Top View

| Y
= .

‘ I

E 7
o

l."-.i

o

o /

e

u

~

g

Z8

Make the
Grade

&

Survive the ~162ft (49.4m)
Shootout Figure 2: RoboSub Course Layout

Bootlegger Top View

2ft
(0.61m)

G-Man Bootlegger '
(SPECI
' y |) | e - | ‘drawing notto scale)

12U
(3048mm)

G-Man Bootlegger

60" b
(1524mm) 55 ! -

s

311 PVC \

Y

. . 1ft
3” (76mm) Box (0.3}m)
from Black/Red 5
corrugated plastic aft

sheets 2ft (1.2m)

Sta rt (0.61m)

2” (51mm)
Box

Choose Gate

(drawing notto scale)

Figure 4: Choose Your Side

Follow Path h

Figure 5: Path markers

G-Man Bootlegger

Touch Buoy

2-4 ft
(0.6-1.2m)

v

(drawing notto scale)
Figure 6 : Make the Grade

‘ I

Collecting

Bins

Bootlegger G-Man

Figure 7: Collecting

Bootlegger

O

Torpedoes

2-4 ft
(0.6-1.2m)

Top View

Surface w/

A S A_AL

Cash or

Smash -
Octagon

Side

Bootlegger

2-3ft
(0.6-0.9m)

(drawing notto scale)

o . Floor |
Figure 9: Cash or Smash

Autonomy

Hector Mora-Silva, Roberto Hernandez

o Objective:
o Implement and design the overall software structure for the AUV
o Receive and provide data to all systems
o Decisions and give instructions for the required tasks based on
the current state

o States Overview
o State Zero
o 6 main tasks

ROS and SMACH | SM ROOT

o Robot Operating System (ROS):
o Libraries and tools to help with the development of
robot applications
o Publishers/Subscribers
o A Publisher continually broadcasts a message
o A Subscriber receives these messages

o State Machine (Smach): A package within ROS
o ROS-independent Python library
o Hierarchical state machines
o Mainly to execute complex plans
o

The state machine on the rightis a flow chart that shows
different states with given outcomes that determine how the
states transition

State Machine Viewer

o GUI that shows the state
machines

o Possible transitions between
states

o Currently active state

o Values of user data that is
passed around between states

Graph view

| State outcomes

Active state

>
I/’

State machine
outcomes

Userdata of
selected' state

Table 5: Autonomy Challenge Performance Measures

Task Maximum Points

Weight See Table: Weight
Marker / Torpedo exceeding weight or dimensional spec by <10% -500 / item

Gate: Pass through 100

Gate: Maintain a fixed heading 150

Gate: Coin Flip 300

Gate: Style Yaw, Roll/Pitch +100/+200 (800 max)
Make the Grade: Any, Correct side 300, 600

Collecting: Remove Lid 500

Collecting: Any bin, Correct bin 500, 1000

Survive the Shootout: Large, Small 800, 1200 /torpedo (max 2)
Survive the Shootout: Correct side +300 / torpedo

Cash or Smash: Surface in Area 1000

Cash or Smash: Surface with object 400 / object

Cash or Smash: Drop object 200 / object

Cash or Smash: Object on Table 500 / object

Cash or Smash: Correct Table +300 / object
Random Pinger first task 500

Random Pinger second task 1500

Inter-vehicle Communication 1000

Finish the mission with T minutes (whole + fractional) Tx100

MISSION_SM_ROOT

succeedec

-

¢ GATE_TASK

succeede

aborted

PATH MARKER

— S
I’)
R

aborted : 3
succeege

-~ BUOY_TASK

(

aborted preemptead

succeeded

aborted cceeded
n
@ "\

preempted

preempted

preampted

Transition From Ros1 to Ros2

Started with ROS1 due to our current hardware. Unfortunately, the target operating system,
newer software and adding other components started to be limited, so moving to a newer

release from ROS2 was decided. Which brings advantages like using Behavior Trees instead of
Finite State Machines.

24

Transition Finite State Machine to
Behavior Trees

BehaviorTree.CPP

®
The C++ library to build Behavior Trees.
I Batteries included. > Sequence
? Fallback [EnterRoom] [CloseDoor]
|IsDoorOpen | ¥ Retry
attempts=5

Focal Fossal
| OpenDoor I

* Visual Oriented

e Parrel task/function/states

* Goal Oriented vs Decision Oriented

* Higher Flexibility, more modular =easier to make changes

» Easierto reach functions/actionsfrom another node directly

[Grook
File Tools
| | DoorClosed MainTree
L+
Load File Root
Roal
Actlon |
{;3 AlwaysFailure Roat]
From Server) CUEERSS
(4 ‘ L,
Save sThroughWwindow 7 Fallback
Condition root_Fallback
IsDoardpen & J
Control
Fallback
Sequence
sequencestar] 4 ot
Decorator ‘ =} Sequence stz SubTreeExpanded A: PassThroughWindow
r ‘
Repeat - m
RetryUntilSucceshul
SubTres
DoorClosed
L : L &
;Dooropen | | A PassThroughDoor ‘ =} Sequence
door_closed sequence
.
Aubo-Zoom - L i) y & :
Z Inverter (™ RetryUntilSuccesful | A PassThroughDoor A CloseDoor
- num_attempts [IETEE
‘i v
Switch Layout
/? ® *
Rearder | corOper | | A OpenDoor |

Basic sequence with Boolean 'success' for Nodes, next is implement logic via Groot and
code hardware data ..

[+ robert@xps9360: ~/DummySub/build Q =
it Selection View Go Terminal Help
ricked Mode is intended For safe code browsing. Trust this window to enable all Features. Manage Le: 3 Fmake
— - ~—-- The C compiler identification is GNU 9.4.9
2 bt treexml X -- The CXX compiler identification is GNU 9.4.0
- -- Check for working C compiler: /fusr/bin/cc
home > robert > DummySub > & bt_tree.xml -- Check for working C compiler: fusr/bin/cc -- works
1 root BTCPP format="4" -- Detecting C compiler ABI info
2 BehaviorTree ID="MainTree" -- Detecting C compiler ABI info - done
: Sequence name="root sequence’ -- Detecting C compile features
4 CheckSystemHardware name="Check System Hardware" -- Detecting C compile features - done
5 GoalsNotCompleted name="Goals Not Found” -- Check for working CXX compiler: /usr/bin/c++
GateGoal name="Gate Goal' -- Check for working CXX compiler: fusr/binfc++ -- works
- BouvGoal name="Bouv Goal' -- Detecting CXX compiler ABI info
GoalsCompleted name="Goals Completed" -- Detecting CXX compiler ABI info - done
Caallence -- Detecting CXX compile features
EEL;;;;“fo? -- Detecting CXX compile features - done

-- Configuring done

-- Generating done

-- Build files have been written to: /home/robert/DummySub/build
c S make

[560%]
[106%]
[100%] Built target DummySub

A1l Hardware Checks Passed

ALl goals not completed
Completing Gate Goal Gate Goal
Completing Bouy Goal Bouy Goal
ALl Goals Found

Computer Vision

Bailey Canham, Milca Ucelo

Overall Team Goal

* Our goalis to be able to identify
important competition objects with a 70%
accuracy

* We also would like to extrapolate as
much information as possible from the
identified objects, such as being able to tell how
far the robot must rotate to be perpendicular to
the object

* Additionally, we plan to utilize
Google ColLab and evaluate how effective this
tool is

t ﬂ ”mlﬁ, ///h"“ ‘. i

]lh 5

First Step:
Exploration

* We wanted to get a better
idea of how computer vision
programs work and how to
test them on Google ColLab

* We used a pre-trained
computer vision program in
order to get comfortable with
how to use and evaluate
these programs.

Second Step: Evaluation

* We wanted to see how much progress the
previous senior design team made in
computer vision

» After testing the program, we learned that
their computer vision program was only able
to recognize the letter ‘A’

* Therefore, we needed to train our own model

Third Step: Prepare

* To train, we need to have an abundance of
photos of the objects we wished to recognize, so
we took over 500 photos of the objects we had T——
available: The Badge Buoy and the Prequel Gate age: /hone/plcha/Desktop] tragess/ ING_4958. G -> Anaotation:.. [Desktop/ING_4958 |

'< 1 [home [pichu/Desktop/inagesB/ING_4959.IPC -> Annotation:../Desktop/IMG_4959 |
* We then had to label each image using the inag: /hom/p1chu/Deskto/ Lnnges/ 14960, 3G -> Ansotatin:.. [Oeskt 184960 |

o m,. [home /pichu/Desktop/inagess/ING_4961.39G -> Annotation: .. /Desktop/ING_4961 |
program LabellMG - 5
gas lnm [home/plchu/Desktop/inagess/ING_4962.IPC -> Aanotation:../Desktop/ING_4962

H H Xum Jhome/plchu/Desktop/inagesB/ING_4963.JPC -> Aanotation:../Desktop/ING_4963
* This produced a txt file that related to each M L Y
phOtO mge /hone [plchu/Desktop/inagess/ING_4965.3PG -> Annotation:. . Desktop/ING_4965
. lmc /home [plchu/Desktop/inagesB/ING_4966.)PC -> Anmotation:../Desktop/ING_4966 "
F xme [home/phchu/Desktop/inagess/ING_4967.3PG -> Annotation: .. /Desktop/ING_4967 &
W4m PG -> Annotation:../Desktop/ING 4968

Fourth Step: Train

* We created the other needed files (obj.data,
obj.names, yolov4.cfg, train.txt)

e Qur first training attempt lasted 5 hours and got
through around 500 iterations

Cannot connect to GPU backend

* Google ColLab then kicked us out for using too o crt ety conec 13 GPU e
many resources ' ' |

* However, we were able to continue the training
process once we were allowed access again and
trained up to 1000 iterations

Fifth Step: Test

e Using our training, we tested other images of
the Badge Buoy and the Prequel Gate

* The model was able to identify the Badge
Buoy consistently, no matter orientation or
cropping

* The model had a harder time identifying the
Prequel Gate, but was still overall successful

Badge: 0.94

Next Steps

* We will continue to improve our computer
vision model to increase accuracy

* We will start to explore avenues of how to
increase information flow between the
computer vision system and the navigation
system

Control Systems

BART RANDO / ANDREW HEUSSER

1§ Initial Goals

Organize the existing Create modular Create new classes to Deploy, Test, and Refine
code baseinto an Object classes for each distinct supportsensors which the code to maximize
Oriented design control system to simplify have not yet been accuracy and efficiency
future expansions of the implemented (VN-100,
code base DVL, Hydrophones, Sonar)

Where we began & Initial Difficulties

The IMU (Inertial Measurement Unit) is the most vital sensor of all the control
systems. This year we plan to upgrade the IMU from the Adafruit BNOO55 to the
Vector Nav VN-100.

Our first goal was to write a working class that would allow our Teensy
microcontroller to interface with the VN-100

Since the VN-100 is extremely advanced and completely different from the
BNOO55, none of the previously written code is compatible with it.

Vector Nav also closely controls the distribution of their proprietary libraries and
instructions.

The VN-100 is expensive and unique, so there isn't a lot of documentation freely
available explaining the process as to how to implement it, and we need to be
extremely careful in handling and wiring it, since any mistake could be very costly.

Testing code for the VN-100 is not possible through simulation. The VN-100 must
be physically connected to the Teensy for us to test if our code is working properly.

The VN-100 was unused and has never been connected to a Teensy by anyone at
CSULA previously. Nor was any printed documentation included with the sensor.

STEPS INVOLVED IN TRANSITIONING TO THE
VN-100

o We needed to file an application get approved by Vector Nav to gain access
to their proprietary libraries and control software

o We needed to modify the Vector Nav “Rugged External Connector” cable
by adding a quick disconnect plug so we could attach it to the Teensy
microcontroller, as well as to the control software as needed

o We needed to solder pins to the teensy board and assemble a breakout
board to be able to connect and test various sensors during the
development and testing phases of programming

o We needed to write a modular class specifically for the VN-100 that
communicates through the UART communications format

Tt (1

Vector Nav Control Software

T @ 220420 tew

Mo N 0O R

e 7N TVORRTY by

Sensor Position Visualization

Bk Py Oiot By B iat T 830 ol TAC § Bwdeme 1 G) e Naee

W) Sl e

Gpe Aol mow

-2

-7

- - - - ' - . - - L - . . - . - . - ' - - . - ' - . - - '-
1480 160840 161450 81300 161590 161320
¥ Yoa Urceseyy 57 Pk Unowtsety § Rl Uncewy

Modifying the VN-100 Connecter cable with
an mtermedlate quick disconnect plug

o
1\\} Finished and Tested Connector Cable
\ '/5 N 2 /™

‘ \} \? k‘) ‘_/
ha | \ : /
| \ L) /

Soldering pins and assembling the
breakout board for quick prototyping
on the Teensy Microcontroller

CURRENT DIFFICULTIES

» Although we are currently working on a modular
class for the VN-100. Most instructions from Vector
Nav are specifically written for SPI communication
formats and not UART.

» This Is because other versions of the VN-100 are
capable of SPI, but the "rugged external connector"
restricts access to the necessary pins required for
communicating through SPI.

» As such we will need to write specific UART
reading and parsing methods into the modular class
we are currently working on, before we can even
begin to communicate with the sensor.

ﬁc}‘/

O

N

\b

O

Future Goals

/

N[

Fl NIS h e Finish writing and testing the UART based class for the VN-100
e Create additional modular classes for existing sensors and control
Create syetorme

Y4

e Collaborate with EE and ME studentsto begin developing classes

CO I I a b O ra te for new systems that are being developed (DVL, hydrophones,
Sonar)

Y4

(¥

e Once a working prototype submarine is completed, deploy and

De p I Oy a n d te St test our code for proper functionality. Rewrite and correct code as

necessary.

Name: VectorNav -100 IMU
Details:

o Pitch, Yaw, Roll of sub

o C++library

o UART Connection

Name: Teledyne Pathfinder
DVL

Details:

o Tracking Translational
Movement

o Depth

o Serial Connection

Name: AS-IHydrophones
Details:

o Angle to underwater
Pinger relative to front of
sub

Reading from Amplifier

Array of Hydrophones
connected to amplifier

Analog Connection

Name: Blue Robotics Ping
Sonar

Details:
o Large object detection
o Arduino Library / Python

o Analog Connection

Navigation Team

Brandon Cao, Thomas Benson

Underwater
S.L.A.M.

Two Key Parts:
o Localization
o Mapping
Produced strictly through sensor
data
Problem:

o Noise corruption in data

| ocalization

Recelve ¢

ata from sensors

through ROS nodes/topics.

Process t

ne data and publlsh it to

the entire system.

Use acce
calculate
Minimize

erometer data to
displacement.
noise and error

propagation.

Simulation
Environment

e Need a test environment
e ROS Gazebo
o Open Source 3D Robotics
Simulator
e Arduino + IMU
o Platform.IO

Remaining
Tasks

More Sensors

o Barometer

o Sonar

o Hydrophones
Mapping Software

o Explore environment and build

a map using sensors.

Underwater Testing

