

Software Design

Document

for

Robo Sub

Version 2.0 approved

Prepared by Victor Solis, David Camacho, Hector Mora-Silva, Roberto Hernandez, Bart

 Rando, Andrew Heusser, Bailey Canham, Milca Ucelo Paiz, Thomas Benson, Brandon

Cao

Advisor: Richard Cross

Computer Science Department, California State University, Los Angeles

May 12, 2023

Table of Contents...pg 2

Revision History..pg 4

1. Introduction... pg 5

1.1. Purpose.. pg 5

1.2. Document Conventions……………………... pg 5

1.3. Intended Audience and Reading Suggestions... pg 5

1.4. System Overview.. pg 5

Design Considerations...pg 6

2.1. Assumptions and dependencies... pg 6

2.2. General Constraints... pg 6

2.3. Goals and Guidelines... pg 7

2.4. Development Methods.. pg 7

Architectural Strategies... pg 8

System Architecture.. pg 9

Policies and Tactics... pg 16

5.1. Specific Products Used... pg 16

5.2. Requirements traceability.. pg 17

5.3. Testing the software.. pg 17

5.4. Engineering trade-offs... pg 17

5.5. Guidelines and conventions... pg 17

5.6. Protocols.. pg 17

5.7. Maintaining the software... pg 18

5.8. Interfaces... pg 18

5.9. System's deliverables... pg 18

5.10. Abstraction.. pg 18

Detailed System Design.. pg 19

Detailed Lower-level Component Design

7.1 Name of Class or File... pg 27

7.1.1 Classification... pg 27

7.1.2 Processing Narrative (PSPEC)... pg 27

7.1.3 Interface Description... pg 27

7.1.4 Processing Detail.. pg 27

7.1.4.1 Design Class Hierarchy.. pg 27

7.1.4.2 Restrictions/Limitations... pg 27

7.1.4.3 Performance Issues.. pg 27

7.1.4.4 Design Constraints... pg 27

7.1.4.5 Processing Detail for Each Operation..................................... pg 27

User Interface

8.1. Overview of User Interface.. pg 33

8.2. Screen Frameworks or Images... pg 33

8.3. User Interface Flow Model.. pg 34

Database Design

Requirements Validation and Verification... pg 35

Glossary.. pg 37

References.. pg 38

Version History

Date Version Notes

 Dec 9, 2022 1.0 First release of document

May 12, 2023 2.0 Second release of document

1. Introduction

1.1 Purpose
This document represents the software component of Lanturn, an Autonomous Underwater

Vehicle made by the Robosub Senior Design Software and Hardware/Electrical teams. This will

break down into further sub teams which put together make up the entire RoboSub Senior

Design Software Team. These sub teams include Autonomy, Computer Vision, Controls, and

Navigation. Some modules used for software include: the ROS module and the Arduino module.

1.2 Document Conventions
The standards/conventions that were used to write this document are very common formatting

such as bold headings, highlighted words that are important, and smaller fonts for paragraphs.

1.3 Intended Audience and Reading Suggestions
The types of readers that this document is intended for are future developers of the RoboSub

Senior Design years, developers who are interested in robotics, and hobbyists. This document

will cover the four different sub teams that make up the RoboSub Senior Design Team working

on Lanturn: Autonomy, Computer Vision, Controls, and Navigation.

Autonomy covers state machines, Computer Vision covers machine learning and image

processing, Controls covers movement and IMU readings, Navigation covers sensor readings

and mapping/localization.

1.4 System Overview
The Autonomy/Mission Planning sub team is to cover the SMACH model developed to control

the AUV subsystems through each task at the RoboNation Competition.

The Computer Vision sub team is to recognize specific images, such as badges or dollar signs, in

underwater environments and then process them through a machine learning model and send the

relevant data to Autonomy/Mission Planning.

The Controls sub team is to control Lanturn, the sub, with its thrusters using PID controllers.

This is done using three different axes: Pitch to tilt forward or backward, roll to move side to

side, and Yaw to rotate left or right.

The Navigation sub team is to gather data from the sensors such as barometer and then also send

relevant data to Autonomy/Mission Planning.

2. Design Considerations

This section describes many of the issues which need to be addressed or resolved before

attempting to devise a complete design solution.

2.1 Assumptions and Dependencies

Lanturn will have a TX2 module, a small form-factor embedded computing device, for its main

computer. The TX2 module comes flashed with Ubuntu 18.04 and comes packaged with Jetpack

4.6.1, a set of libraries designed for AI computations designed for the TX2 module.

Over the Operating System base and the Kernel overlay will be ROS2 Foxy, a piece of

middleware that sets an environment for the different processes that will run on Lanturn.

The second computing device that will exist in the Lanturn system is a microcontroller, a teensy

4.1. The microcontroller will be used to interface with the onboard sensors, motors, and

actuators.

2.2 General Constraints

Ubuntu is the only operating system that can run on the TX2 module. This requires any drivers

or other implemented interfaces to be designed for, or to be compatible with Ubuntu versions.

The TX2 module and its accompanying software is designed for Ubuntu 18.04. Even though it is

designed for Ubuntu version 18.04, it is possible to upgrade to a later Ubuntu version; however,

the only Ubuntu version which is officially supported is Ubuntu 18.04. The Ubuntu version the

TX2 will be running on is Ubuntu 20.04 Focal; all constraints that come with running on an

unsupported version of Ubuntu on the TX2 module will exist in this project.

The middleware running on top of Ubuntu is a ROS2 version, ROS2 Foxy, which runs on

Ubuntu 20.04. ROS2 Foxy comes with restrictions with the programming languages that can be

used. The API that is used for development are rclcpp (C++ library) and rclpy (Python library).

The second computing device, Teensy 4.1, must be programmed in C++ using one of:

teensyduino with Arduino IDE or platformio for Visual Studio Code.

2.3 Goals and Guidelines

This document will have the following goals and guidelines in mind:

• The Lanturn project must have a functioning autonomous system that can execute

competition tasks by July 2023.

• All code written for this project should be documented.

• Programs written for this project should be refactored periodically to improve efficiency.

2.4 Development Methods

The software team will be broken down into 5 sub-teams, each responsible for one module of the

software system. Each week, the sub-teams show progress made and communicate any

difficulties that have come across.

As sub-teams gain deeper understanding of their module, they will communicate to the other

modules what data they can provide and what data they cannot.

This system will ensure that none of the modules depend on each other and can be switched out,

if need be, in future versions of Lanturn.

3. Architectural Strategies
Each module will be programmed and packaged as a ROS2 package, except for the controls

module which will exist as firmware on the microcontroller. Even though the microcontroller

won’t be a ROS package, it will still have all the characteristics of a ROS2 package; it will be

entirely modular, using the same communication system provided by ROS2.

The controls module will interface with actuators, sensors and thrusters. The computer vision

module will interface with cameras. All other modules will exist as software and will go through

the controls and computer vision modules to interact with the environment.

Additionally, there will be a watchdog service that will monitor the liveliness and diagnostics of

the system.

4. System Architecture

The system is designed as a ROS system and uses ROS conventions.

4.1 Overview of the System

Figure 01: A high level overview of the software modules in the system

Computer Vision shall output to: Mapping, Localization

Mapping shall output to: Autonomy, Localization

Localization shall output to: Autonomy

Autonomy shall output to: Controls

Controls shall output to: Mapping, Localization

Autonomy will manage time, manage state machines, read and interpret mapping/localization

data, read and filter computer vision data, control claw, shoot torpedoes, release dropper,

autonomously navigate map, and position/orient/center to desired orientations.

Comp Vision will publish raw images from front and bottom cams, detect and classify all task

objects, provide distance from objects, calculate angle of incidence of objects.

Controls will read and publish data from Bar30 barometer, VN-100 IMU, and Teledyne DVL.

Controls will also implement a PID library, generate PWM values that will move the sub to

desired position, output PWM values to thrusters. Controls will also control a mechanical claw,

shoot torpedoes, and release a ball from dropper all on command.

Mapping will subscribe to all computer vision data and Sonar data. Mapping will also implement

a Kalman Filter, generate a map of the environment, position all task objects in map, and publish

map.

Localization will subscribe to IMU data topic, Barometer data topic, both camera topics, DVL

data topic, and map topic. Localization will position and orient the sub inside the map, and

publish localization data.

Autonomy

Figure 02: DFD LV1 Autonomy

The autonomy part of the software is responsible for completing the robosub goals. This is done

using behavior trees and using the ROS software to navigate the data to move from one state to

another until each goal is completed, battery runs out, or time limit of 20 minutes is exceeded.

Autonomy class is subscribed to all hardware components to be able to determine the next goal,

and to controls to reach the next goal or complete the task. Each task/goal is broken down into

their own behavior trees in their own class.

Computer Vision

Figure 03: DFD LV1 Computer Vision

The DFD Level 1 will start with the Camera sending information to the Image Processor, after

processing the image it will send the information to Object Detection. Object Detection will

process that information and once it’s able to detect the object it will send the data to Object

Classification, and it will define the location of the object. Once Object Classification processes

the data of the object detected, it will send a Message Output. The Message Output will give out

the data of the Object ID and the Bounding Box.

Mapping & Localization

High-level Description:

The module receives sensor data inputs, such as camera images and IMU data, and

processes them using the ORB_SLAM3 library. The outputs of the module include the

estimated camera pose, which represents the position and orientation of the camera in

the environment, and a reconstructed 3D map in the form of a point cloud.

The module is built using a combination of the ORB_SLAM3 library, ROS 2 framework,

and additional components for handling sensor data and publishing the results. The

architecture employs the Observer and Publisher-Subscriber design patterns for efficient

communication between different components.

Level 1 Data Flow Diagram (DFD):

Level 1 Control Flow Diagram:

1. Receive camera images and IMU data from sensor streams.

2. Convert sensor data into a format suitable for ORB_SLAM3 processing

3. Feed the sensor data into the ORB_SLAM3 library for simultaneous

localization and mapping

4. Retrieve the estimated camera pose and 3D map points from the

ORB_SLAM3 library

5. Convert the camera pose and map points into the desired output format

6. Publish the localization and mapping outputs for use by other

components of the system

Design Patterns:

The architecture of the mapping and localization module employs the following design patterns:

1. Observer: The module observes the sensor data streams (camera images and IMU

data) and processes them as they become available. This pattern ensures that the

module stays up to date with the latest sensor data

2. Publisher-Subscriber: The module uses the ROS 2 framework’s publisher-subscriber

mechanism for communication between components. The pattern enables efficient and

decoupled communication between the module and other parts of the system that rely

on the localization and mapping outputs.

Controls

Figure 06: DFD LV1 Controls

The controls code has the same form as any other microcontroller code. It starts with a setup()

function then starts executing a loop() function until told to otherwise.

In the setup() function, sensors, actuators and the thruster motors are initialized and general setup

like importing libraries and configuring the PID controller is done here. This function is executed

once then control is turned over to the loop() function.

The loop() function contains the code for the PID controller, sensor reading and actuator control

that will run independently. The flow of the data is this: grab sensor data, fix setpoints to account

for circular rollover error, compute PWM values, combine the PWM values, output them to the

ESCs and loop back to the beginning.

5. Policies and Tactics

The main influences on Lanturn’s Software design has already been established by previous

years.

Some adjustments have been made by individuals to suit their ideas and programming style, but

most of the system is inherited from previous years.

5.1 Choice of which specific products used

System

❖ Operating System

➢ Ubuntu 20.04

❖ Build System

➢ Colcon

➢ Ament_cmake

Autonomy

• Visual Studio Code

• Groot

• BehaviorTree.CPP

Controls

• Visual Studio Code

• Platform.I0

Computer Vision

• LabelIMG

• Google CoLab

• YOLOv4

• Darknet

• OpenCV

Mapping & Localization

• Visual Studio Code

• ORB-SLAM3

• Pangolin

• OpenCV

• Eigen

• dBow

• g2o

• ROS 2

5.2 Plans for ensuring requirements traceability

Each module of the system will have its own git repository. The sub-team assigned to the module

will be responsible for keeping detailed documentation for the process of setting up, installing

and using the software module.

5.3 Plans for testing the software

Navigation

• Simulation testing: Test the algorithm using a simulated environment. This will help
identify and fix potential issues in a controlled setting. Simulation tools like Gazebo can
help to produce realistic underwater scenarios.

• Unit testing: Develop unit tests for the individual components and functions of the ORB-
SLAM3 implementation to ensure they perform as expected. This will help catch any
errors early in the development process and improve the overall systems reliability.

• Integration testing: Once individual components have been tested, perform integration
testing to ensure the ORB-SLAM3 implementation works correctly with other
subsystems.

• Test dataset evaluation: Use publicly available underwater datasets to evaluate the
ORB-SLAM3 implementations performance.

• Performance metrics: Define performance metrics, such as localization accuracy, map
quality, and computational efficiency, to quantify the ORB-SLAM3 implementation’s
performance. These metrics will help assess the system’s effectiveness and identify
areas for improvement.

• Test scenarios: Create a diverse set of test scenarios to evaluate the performance of the
ORB-SLAM3 implementation under different conditions.

Autonomy

• Create unit test for Behavior Trees.

• Create unit test for publishers

• Create unit test for subscribers.

• Simulate test environment for Behavior Trees

• Simulate test environment for publishers

• Simulate test environment for subscribers

• Use testing AUV (Blastoise)

5.1 Engineering trade-offs

ROS is the leading opensource robotics software in use today. There are no engineering tradeoffs

with hardware and software support being mutigenerational.

5.2 Coding guidelines

Using the selected IDE and choice of CPP instead of python ensures that the languages general

convention is enforced.

5.3 Protocol

By using ROS the built in API of the standardized subscriber and publisher model is always

enforced.

5.4 Software Choice

Ros supports both state machine and behavioral trees, currently using state machines, but moving

to behavior trees will ensure that we are more efficient and easier to get to function and complete

goals.

5.5 Software Maintenace

No plans to maintain software, only fix bugs. The software is specially attached to the hardware,

the only way to maintain software or update is to upgrade hardware. If we do that then we need

to refactor or use a different ROS version.

5.6 User Interface

There is no interface for users, fully autonomous, web GUI subscribes to publishers for user

visualization.

5.7 Code Hierarchy

Each package will be in its own directory and contain the following:

-Readme File containing description of package

- Software requirements

- Interface specification

- Required libraries (for hardware components)

- Scripts (or src) directory containing all software.

- Design Images of software (where appropriate)

5.8 Dependency and Building

The installation process for each component has their instructions on their website, detail

installation will be provided in the readme file for each component, any software that needs

compiling will be using Cmake.

• Install Ubuntu 20 (link in resources)

• Install ROS (link in resources)

• Install SMACH (link in resources)

• Install BehaviorTree.cpp (link in resources)

• Install Visual Studio. (link in resources)

5.9 Database

No database is used in autonomy.

6. Detailed System Design

6.1 Autonomy

The main responsibility of autonomy is to design and implement the logic software of the

AUV to complete each task of the competition, using BehaviorTrees. In addition,

autonomy is responsible for receiving and publishing data. Autonomy receives data from

computer vision, localization, and mapping components. Based on the current state of the

AUV, to maneuver throughout the competition, the data collected is then published to the

control's component.

6.1.2 Constraints

• Autonomy will be responsible for system checks prior to starting goal search, and

aborting mission if critical component failure occurs.

• Autonomy will run until either all goals at met, battery capacity runs out or time

limit exceeds 20 minutes.

• Autonomy will assume all data published is correct, data is formatted and

validated prior to being published.

• Autonomy is responsible for completing tasks that lead to completing each goal

successfully, based on its current state and retry if it fails the goal state and

moving on to the next goal/state.

• Failure to complete tasks in a timely matter will result in Behavior Tree failing.

• Behaviors Trees are flexible, rescuable and can be multi embedded, performing

one task at a time, but will parallel goals.

6.1.3 Composition

• ROS2: Robot Operating System V2

• Behavior Tree: BehaviorTreeCpp/PyTrees

Future Implementation:

• Behavior Tree: Complete all Goals Logic

• Choose CPP or Python Implementation, initial state currently written in both

languages for testing.

6.1.4 Uses/Interactions

• Define the current state of the AUV

• Subscribe to receive data from other components of the AUV

• Publish data to controls component of the AUV

• Define transition between sub-behavior Trees

• Define the transition between different behavior trees.

• Pass user data between different trees using blackboard

6.1.5 Resources

• BehaviorTree.CPP - Implemented using C++, assembled using a scripting

language based on XML. Behavior Trees are composable. You can build complex

behaviors by reusing simpler ones. (https://www.behaviortree.dev/)

• PyTrees – Behavior Trees implemented in Python. (https://py-trees-ros-

tutorials.readthedocs.io/en/stable/)

•

6.1.6 Interface/Exports

• Autonomy interfaces only through other systems that directly interact with the

hardware and doesn’t directly interface with any hardware.

• Autonomy shall interact with the user interface to provide the current state of the

AUV

• Autonomy interacts with all other components to receive data to determine the

current state of the AUV

• Autonomy interacts with controls to provide instructions to maneuver the AUV

6.2 Computer Vision

6.2.1 Responsibilities

The primary responsibility of the computer vision is to utilize the cameras attached to the

RoboSub in order to identify various competition items. The computer vision program

will then output a bounding box around the identified object and send that information to

the navigation controls. The computer vision model should have a high enough accuracy

to allow us to be confident in the result. Additionally, the program should output the

https://www.behaviortree.dev/
https://py-trees-ros-tutorials.readthedocs.io/en/stable/
https://py-trees-ros-tutorials.readthedocs.io/en/stable/

distance and angle the robot is from the identified object and send this data to the

navigation controls.

Figure 07: Example Task Object Detection

6.2.2 Constraints

The main constraint on the computer vision model is time and storage. We must train the

computer vision model on pictures of each object we want it to be able to identify.

However, in order to do this, we must have hundreds of pictures available and saved for

when we train the model. Therefore, we must consider how much storage we have

available on the computer. Additionally, training the computer vision model takes quite a

bit of time. In our first training session, we only got through around 500 iterations of

training, and it took over 5 hours. Due to this, we must consider how much time we have

and carefully plan it out in order to ensure we have enough time for the model to train

enough to be reliable.

Figure 08: Google CoLab contraint

6.2.3 Composition

The first subcomponent is Google CoLab, which is a collaborative python programing

space that provides access to cloud computing. We use Google CoLab for its GPU to

train and test our computer vision model. The second subcomponent is YOLOv4, which

is an object detection algorithm. It works by dividing images into a grid system with each

cell in the grid responsible for detecting objects within itself. The third subcomponent is

Darknet, which is a neural network framework written in C and CUDA. We use this in

conjunction with YOLOv4 to complete object detection. The fourth subcomponent is

OpenCV, which contains an optimized computer vision library, tools, and hardware all

aimed at real-time object recognition. We are testing this as a second option to compare

the results with YOLOv4 and Darknet. The fifth and final subcomponent is LabelIMG,

which is a graphical image annotation tool. We use this to label our images prior to using

them to train our computer vision model.

6.2.4 Uses/Interactions

The other component that will be receiving the data is Navigation, either by sending them

the data of the output of the bounding box as well as the angle and distance that the robot

is from the identified object, which will be whatever object they present us with during

the competition. The only side-effects that we could experience in this component would

be if we were to mislabel an input from the camera.

6.2.5 Resources

The main resource needed by the computer vision model is the cameras on the RoboSub.

Since we need to identify the objects around the robot, we need to receive data from the

cameras to run through our object detection model. We would also need significant

processing power to run our computer vision model. However, by knowing this and

communicating with other teams, we can plan for this and create a system that works

with our program.

6.2.6 Interface/Exports

• Export bounding box to Navigation Controls

• Export distance from the robosub to the object to Navigation Controls

• Export angle between robosub and object to Navigation Controls

6.3 Controls

6.3.1 Responsibilities

Controls acts as the primary interface between the hardware and the software for

communications to the main motherboard and ROS operating system. It is responsible for

allowing the various software components to communicate back and forth with all the

sensors, motors, and actuators attached to the robot as necessary.

6.3.2 Constraints

- Requiring permission from manufacturers in order to gain access to libraries and

documentation of components.

- Communication between software developers and hardware developers.

- IMU data is sent in a binary bit format and must be parsed and converted into floats to

be usable.

6.3.3 Composition

Vector Nav VN-100 Inertial Measurement Unit measure orientation, velocity,

and changes in acceleration

Bar30 Barometer Pressure sensor that measures the depth of the robot

Teledyne Pathfinder DVL

(Doppler Velocity Log)

Responsible for measuring the distance, the robot has

traveled using sonic waves.

T-200 Motors Responsible for moving and leveling the robot through

the water

6.3.4 Uses/Interactions

Retrieving data from the IMU sensor

Retrieving data from the DVL sensor

Retrieving data from the Barometer

Sending commands to motor controller

Publishing data to ROS

6.3.5 Resources

IMU - https://www.vectornav.com/resources/user-manuals/vn-100-user-manual

Barometer- https://github.com/bluerobotics/Bar30-Pressure-Sensor

DVL - http://www.teledynemarine.com/Pathfinder_DVL?ProductLineID=34

https://www.vectornav.com/resources/user-manuals/vn-100-user-manual
https://github.com/bluerobotics/Bar30-Pressure-Sensor
http://www.teledynemarine.com/Pathfinder_DVL?ProductLineID=34

6.3.6 Interface/Exports

- Publish IMU data to ROS

- Publish Barometer data to ROS

- Publish DVL data to ROS

- Publish Sonar data to ROS

6.4 Mapping & Localization

6.4.1 Responsibilities

The ORBSLAM3NODE is a ROS 2 node responsible for interfacing with the

ORB_SLAM3 system. Its primary responsibilities include:

1. Subscribing to the camera topic

2. Process the incoming images and IMU messages

3. Passing the image and IMU data to the ORB-SLAM3 system for monocular

 tracking with IMU

4. Publishing the estimated camera pose and reconstructed 3D map

6.4.2 Constraints

1. Assumes the correct path to the ORB-SLAM3 settings file is provided and the
 settings file contains the proper camera and IMU intrinsics

2. Assumes the incoming image messages are greyscale and single channel.
3. Assumes the incoming IMU messages have valid linear acceleration and angular

 velocity data
4. ORB-SLAM3 system should be properly initialized and configured

6.4.3 Composition

1. slam_system: A shared pointer to the ORB-SLAM3 system instance
2. Image_sub: A subscription to the image topic for receiving image messages
3. imu_sub: A subscription to the IMU topic for receiving IMU messages
4. pose_pub: A publisher for broadcasting the estimated pose
5. map_pub: A publisher for broadcasting the reconstructed 3D map
6. map_pub_timer: A timer for periodically publishing the reconstructed 3D map

6.4.4 Uses/Interactions

1. ORB-SLAM3: The ORB-SLAM3 system is used for processing image and IMU
 data and performing monocular SLAM.

2. ROS 2: The node is built using the ROS 2 framework and interacts with other
 nodes through subscriptions, publishers, and timers.

6.4.5 Resources

1. ORBSLAM3NODE(): Constructor for the ORBSLAM3NODE class

2. ~ORBSLAM3NODE(): Destructor for the ORBSLAM3NODE class

3. publish_map(): Function to publish the map points generated by ORB-SLAM3

4. image_callback(): Callback function for handling the incoming image messages

5. imu_callback(): Callback function for handling the incoming IMU messages

6. pose_to_msg(): Static function to convert an OpenCV pose matrix to a

 geometry_msgs::msg::Pose ROS message

7. map_to_msg(): Static function to convert a vector of ORB_SLAM3::MapPoint

 pointers to a sensor_msgs::msg::PointCloud2 ROS message

6.4.6 Interface/Exports

TBD

7. Detailed Lower-level Component Design

7.1 IMU Class

7.1.1 Classification
Class responsible for initializing and acquiring data from the Vector Nav VN-100 IMU

7.1.2 Processing Narrative (PSPEC)
No previously written library for the VN100 was publicly available capable of

 communicating over the 3v UART serial interface. Implementation of such a library was

 necessary to acquire data from the IMU, from the Teensy microcontroller.

7.1.3 Interface Description
The VN100.cpp interface utilizes serial communication to get system register information

directly from the VN100 in the form of binary outputs at the byte level.

7.1.4 Processing Detail
The VN100 shall be implemented within a non-blocking loop, running at the minimum of

100hz

7.1.4.1 Design Class Hierarchy
This class does not inherit from any previous class structures.

7.1.4.2 Restrictions/Limitations
The VN100 must read serial data at high speeds, any code that slows down looping, will

prevent the sensor from communicating. Non-blocking code is mandatory.

7.1.4.3 Performance Issues
No issues now.

7.2 ORBSLAM3NODE Class
7.2.1 Classification

7.2.2 Processing Narrative (PSPEC)
This class serves as the primary interface between the ROS 2 framework and the

 ORB_SLAM3 library. It subscribes to image and IMU topics, processes incoming data
 using ORB_SLAM3, and publishes the estimated camera pose and the reconstructed 3D
 map.

7.2.3 Interface Description
o Subscribes to ‘/camera/image_raw’ topic for incoming messages

o Subscribes to ‘/IMU/data’ topic for IMU messages
o Publishes camera pose to ‘/orbslam3/pose’ topic as

‘geometry_msgs::msg::PoseStamped’ messages
o Publishes reconstructed 3D map to ‘/orbslam3/map’ topic as

‘sensor_msgs::msg::PointCloud2’ messages

7.2.4 Processing Detail

7.2.4.1 Design Class Hierarchy
o Inherits from ‘rclcpp::Node’

7.2.4.2 Restrictions/Limitations
o Assumes the messages are in “mono8” encoding
o Assumes the settings file for ORB_SLAM3 is located at a specific path

7.2.4.3 Performance Issues
o The processing time for image and IMU data depends on the complexity of the

scene and the computational resources available
o The map publishing rate is limited by the timers interval

7.2.4.4 Design Constraints
o Requires the ORB-SLAM3 library and ROS 2 framework to be installed and

properly configured

7.2.4.4 Processing Detail for Each Operation
o Constructor: Initializes the ORB_SLAM3 system, sets up subscriptions,

publishers, and timers
o Destructor: Shuts down the ORB_SLAM3 system
o ‘publish_map()’: Retrieves map points from ORB_SLAM3, converts them to a

‘PointCloud2’ message, and publishes the message
o ‘image_callback()’: Processes incoming messages, passes them to

ORB_SLAM3, retrieves the current pose, and publishes it if available
o ‘imu_callback()’: Processes incoming IMU messages and passes them to

ORB_SLAM3
o ‘pose_to_msg()’: Converts an OpenCV pose matrix to a

‘geometry_msgs::msg::Pose’ message
o ‘map_to_msg()’: Converts a vector of ‘ORB_SLAM3::MapPoint’ pointers to a

‘sensor_msgs::msg::PointCloud2’ message
o ‘main()’: initiliizes the ROS 2 framework, creates an instance of the

‘ORBSLAM3Node’ class, and starts the event loop

8. Database Design

Not applicable.

9. User Interface

9.1 Overview of User Interface

9.2 Screen Frameworks or Images

RQT

Figure 09: RQT Example Plugin Layout

RQT is a user interface that comes packages with ROS and other visualization tools. Ir can be

used to read, send and interpret data. It allows a user to interact with the ROS system the GUI is

connected to. It uses the concepts of plugins to allow the user to view different forms of data and

interpret them in different ways.

In this image, there are six plugins open.

1. Top Left. The Process Monitor plugin helps the user see all processes interacting with or

through the ROS system.

2. Top Center. The MatPlot plugin can interpret data in a grid form and, in the context of

Lanturn, it can be used to interpret stability, velocity and other odometry data.

3. Top Right. The Message Publisher allows the user to send different messages to nodes in

the ROS system.

4. Bottom Right. The Console plugin displays log messages the nodes in the ROS system

are saving.

5. Bottom Center. The Image View plugin displays images that are being streamed through

a topic.

6. Bottom Right. The Topic Monitor shows the topics in the current ROS system and allows

users to see what messages are going through the topic.

9.3 User Interface Flow Model
The RQT user interface uses plugins to display information giving the user full control as to what

is displayed and what is not. This means the user decides on the flow of the user interface,

meaning, any flow diagram displayed here would miss the point of the modularity of this user

interface design.

10. Requirements Validation and Verification

Method of Testing:
● Testing using additional ad-hoc created software including a correlation testing unit.

● Demonstration of the specified capability

● Inspection of the software code possibly using additional inspection techniques

● Analysis of the specific code operation/algorithm to prove functionality.

Requirements related to

1. Autonomy

Requirement

Number

Requirement Task Method for

Testing

1.1 The autonomy module shall manage time in a run through the course Unit Testing

1.2 The autonomy module shall send current state to system logs Unit Testing

1.3 The autonomy module shall read and interpret mapping data Unit Testing

1.4 The autonomy module shall read and interpret localization data Unit Testing

1.5 The autonomy module shall read and filter computer vision data Unit Testing

1.6 The autonomy module shall send command to control claw Unit Testing

1.7 The autonomy module shall send command to shoot torpedoes Unit Testing

1.8 The autonomy module shall send command to release dropper Unit Testing

1.9 The autonomy module shall send a heartbeat to the watchdog service Unit Testing

1.10 The autonomy module shall know the task being executed Unit Testing

1.11 The autonomy module shall autonomously navigate map Unit Testing

1.12 The autonomy module shall position submarine in a desired position Unit Testing

1.13 The autonomy module shall orient submarine in a desired orientation Unit Testing

1.14 The autonomy module shall be able to center with objects Unit Testing

Requirements related to

2. Computer Vision

Requirement

Number

Requirement Task Method for Testing

2.1 The Computer Vision shall send a heartbeat to the watchdog

service
Functional Testing

2.2 The Computer Vision shall publish raw images from front

camera
Functional Testing

2.3 The Computer Vision shall publish raw images from bottom

camera
Functional Testing

2.4 The Computer Vision shall receive images from front camera Functional Testing

2.5 The Computer Vision shall receive images from bottom

camera
Functional Testing

2.6 The Computer Vision shall detect and classify all task objects Functional Testing

2.7 The Computer Vision shall publish bounding boxes of objects Functional Testing

2.8 The Computer Vision shall provide distance from objects Functional Testing

2.9 The Computer Vision shall calculate angle of incidence of

objects
Functional Testing

Requirements related to

3. Controls

Requirement

Number

Requirement Task Method for

Testing

3.1 The Controls shall send a heartbeat to the watchdog service Unit Testing

3.2 The Controls shall read and publish data from Bar30 barometer Unit Testing

3.3 The Controls shall read and publish data from VN-100 IMU Unit Testing

3.4 The Controls shall read and publish data from Teledyne DVL Unit Testing

3.5 The Controls shall implement a PID Library Unit Testing

3.6 The Controls shall generate PWM values that will move submarine

to a desired position and/or orientation
Unit Testing

3.7 The Controls shall output PWM values to thrusters Unit Testing

3.8 The Controls shall clench and release a mechanical claw on

command
Unit Testing

3.9 The Controls shall shoot torpedoes on command Unit Testing

3.10 The Controls shall release ball from dropper on command Unit Testing

Requirements related to

4. Mapping

Requirement

Number

Requirement Task Method for

Testing

4.1 The mapping module shall send a heartbeat to the watchdog service Unit Testing

4.2 The mapping module shall subscribe to all computer vision data Unit Testing

4.3 The mapping module shall subscribe to Sonar data Unit Testing

4.4 The mapping module shall implement a Kalman Filter Unit Testing

4.5 The mapping module shall generate a map of environment Unit Testing

4.6 The mapping module shall position all task objects in map Unit Testing

4.7 The mapping module shall publish map Unit Testing

Requirements related to

5. Localization

Requirement

Number

Requirement Task Method for

Testing

5.1 The localization module shall send heartbeat to the watchdog

service
Unit Testing

5.2 The localization module shall subscribe to IMU data topic Unit Testing

5.3 The localization module shall subscribe to Barometer data topic Unit Testing

5.4 The localization module shall subscribe to both camera topics Unit Testing

5.5 The localization module shall subscribe to DVL data topic Unit Testing

5.6 The localization module shall subscribe to map topic Unit Testing

5.7 The localization module shall position and orient submarine inside

the map
Unit Testing

5.8 The localization module shall publish localization data Unit Testing

Requirements related to

6. Watchdog

Requirement

Number

Requirement Task Method for

Testing

6.1 The watchdog module shall subscribe to all heartbeats from all

modules
Unit Testing

6.2 The watchdog module shall shutdown submarine if major

components fail
Unit Testing

6.3 The watchdog module may have fallback module configurations Unit Testing

11. Glossary

Term Description

S.L.A.M Simultaneous localization and mapping

IMU Inertial measurement unit

ROS Robotic Operating System. An open-source framework that helps

researchers and developers build and reuse code between robotics

applications.

Localization

The process of determining where a mobile robot is located with respect its

environment

DVL Dopler Velocity Log

SMACH State Machine

YOLOv4 YOLOv4 is a SOTA (state-of-the-art) real-time Object Detection model.

Darknet Darknet is an overlay network within the Internet that can only be accessed

with specific software, configurations, or authorization, and often uses a

unique customized communication protocol.

OpenCV OpenCV (Open-Source Computer Vision Library) is an open-source

computer vision and machine learning software library. OpenCV was built

to provide a common infrastructure for computer vision applications and to

accelerate the use of machine perception in commercial products.

Google CoLab Colab allows anybody to write and execute arbitrary python code through

the browser and is especially well suited to machine learning, data analysis,

and education.

LabelIMG LabelImg is a graphical image annotation tool which allows you to draw

visual boxes around your objects in each image, it also automatically saves

the XML files of your labelled images.

PID Proportional Integral Derivative

PWM Pulse Width Modulation

ESC Electric Speed Controller

12. References

(1) ROS: “Wiki.” Ros.org, http://wiki.ros.org/

(2) SMACH: FelixKolbe. “Wiki.” Ros.org, http://wiki.ros.org/smach/Documentation.

(3) SMACH Viewer: PlayFish. “Wiki.” Ros.org,

http://wiki.ros.org/smach_viewer#Documentation

(4) BehaviorTree.CPP: BehaviorTree.CPP. www.behaviortree.dev.

(5) Groot: Groot | BehaviorTree.CPP. www.behaviortree.dev/groot.

(6) YOLOv4: “Yolov4 Tiny Object Detection Model.” YOLOv4 Tiny Object Detection

Model, Roboflow Inc. , https://roboflow.com/model/yolov4-tiny.

(7) Darknet: Bochkovskiy, Alexey. “Home · Alexeyab/Darknet Wiki.” GitHub, GitHub, Inc.,

https://github.com/AlexeyAB/darknet/wiki.

(8) OpenCV Download: Linuxize. “How to Install Opencv on Ubuntu 20.04.” Linuxize,

Linuxize, 5 July 2020, https://linuxize.com/post/how-to-install-opencv-on-ubuntu-20-04/.

(9) OpenCV: doxygen. “OpenCV Modules.” OpenCV, OpenCV,

https://docs.opencv.org/4.x/.

(10) Google CoLab: Google. “Colaboratory.” Google Colab, Google,

https://research.google.com/colaboratory/faq.html.

(11) LabelIMG: Heartexlabs. (n.d.). Heartexlabs/labelimg: LabelImg is now part of

the label Studio Community. the popular image annotation tool created by Tzutalin is no

longer actively being developed, but you can check out label studio, the open source data

labeling tool for images, text, hypertext, audio, video and time-series data. GitHub.

Retrieved December 9, 2022, from https://github.com/heartexlabs/labelImg

(12) VN-100: VectorNav “VN-100 User Manual.” VectorNav,

https://www.vectornav.com/resources/user-manuals/vn-100-user-manual

(13) Mur-Artal, R., & Tardós, J. D. (2021). ORB_SLAM3 [Source code]. GitHub.
https://github.com/UZ-SLAMLab/ORB_SLAM3

(14) Mur-Artal, R., & Tardós, J. D. (2017). ORB-SLAM2: An Open-Source SLAM
System for Monocular, Stereo, and RGB-D Cameras. IEEE Transactions on Robotics,
33(5), 1255-1262

http://wiki.ros.org/
http://wiki.ros.org/smach/Documentation
http://wiki.ros.org/smach_viewer#Documentation
http://www.behaviortree.dev/
http://www.behaviortree.dev/groot
https://roboflow.com/model/yolov4-tiny
https://github.com/AlexeyAB/darknet/wiki
https://linuxize.com/post/how-to-install-opencv-on-ubuntu-20-04/
https://docs.opencv.org/4.x/
https://research.google.com/colaboratory/faq.html
https://github.com/heartexlabs/labelImg
https://www.vectornav.com/resources/user-manuals/vn-100-user-manual
https://github.com/UZ-SLAMLab/ORB_SLAM3

