
Software Design
Document

for

VR Training
Version 1.01

Prepared by Cameron Cheng, Fernando Torres, Denise Tabilas, Martin Castorena,
Manuel Guillen, Jaiden Holcomb, Seng Hei Lei, Matthew Mendoza, Kevin Truong

and Han Cao

Southern California Edison

11/21/22

Table of Contents... <pg #>
Revision History...<pg #>

1. Introduction..<pg #>
1.1. Purpose...<pg #>
1.2. Document Conventions……………………... <pg #>
1.3. Intended Audience and Reading Suggestions..<pg #>
1.4. System Overview... <pg #>

2. Design Considerations... <pg #>
2.1. Assumptions and dependencies... <pg #>
2.2. General Constraints..<pg #>
2.3. Goals and Guidelines...<pg #>
2.4. Development Methods...<pg #>

3. Architectural Strategies..<pg #>
4. System Architecture...<pg #>

4.1. ... <pg #>
4.2. ... <pg #>

5. Policies and Tactics..<pg #>
5.1. Specific Products Used.. <pg #>
5.2. Requirements traceability...<pg #>
5.3. Testing the software... <pg #>
5.4. Engineering trade-offs... <pg #>
5.5. Guidelines and conventions... <pg #>
5.6. Protocols.. <pg #>
5.7. Maintaining the software... <pg #>
5.8. Interfaces..<pg #>
5.9. System's deliverables... <pg #>

5.10. Abstraction...<pg #>
6. Detailed System Design...<pg #>

6.x Name of Module... <pg #>
6.x.1 Responsibilities..<pg #>
6.x.2 Constraints... <pg #>
6.x.3 Composition...<pg #>
6.x.4 Uses/Interactions..<pg #>
6.x.5 Resources... <pg #>
6.x.6 Interface/Exports..<pg #>

7. Detailed Lower level Component Design
7.x Name of Class or File... <pg #>

7.x.1 Classification..<pg #>
7.x.2 Processing Narrative(PSPEC)..<pg #>
7.x.3 Interface Description..<pg #>
7.x.4 Processing Detail.. <pg #>

7.x.4.1 Design Class Hierarchy...<pg #>
7.x.4.2 Restrictions/Limitations..<pg #>
7.x.4.3 Performance Issues.. <pg #>
7.x.4.4 Design Constraints...<pg #>
7.x.4.5 Processing Detail For Each Operation...<pg #>

8. User Interface
8.1. Overview of User Interface.. <pg #>
8.2. Screen Frameworks or Images... <pg #>
8.3. User Interface Flow Model...<pg #>

9. N/A
10. Requirements Validation and Verification... <pg #>
11. Glossary... <pg #>
12. References... <pg #>

Revision History

Name Date Reason For Changes Version

Martin Castorena 11-21-2022 Work on 2.1,2.2,5.1,5.2,5.3 1.0

Fernando Torres 12-8-22 working on all of part 1 1.1

Jaiden Holcomb 12-9-2022 Implementing User Interface Section
(Section 8.1 - 8.3)

1.1

<Add rows as necessary when the document is revised. This document should be consistently
updated and maintained throughout your project. If ANY requirements are changed, added,
removed, etc., immediately revise your document.>

1. Introduction
1.1 Purpose

The purpose of this project is to develop a training application in virtual reality for Southern
California Edison. By training in VR, this ensures the safety of the trainees while learning
important skills in doing overhead and underground tasks.

Identify the product whose software requirements are specified in this document, including the
revision or release number. Describe the scope of the product that is covered by this SRS,
particularly if this SRS describes only part of the system or a single subsystem.

1.2 Document Conventions

we went to chino hills edison in november for guidence

Describe any standards or typographical conventions that were followed when writing this SRS,
such as fonts or highlighting that have special significance. For example, state whether priorities
for higher-level requirements are assumed to be inherited by detailed requirements, or whether
every requirement statement is to have its own priority.

1.3 Intended Audience and Reading Suggestions

Edison trainiee or outsource trainiee

Describe the different types of reader that the document is intended for, such as developers,
project managers, marketing staff, users, testers, and documentation writers. Describe what the
rest of this SRS contains and how it is organized. Suggest a sequence for reading the document,
beginning with the overview sections and proceeding through the sections that are most pertinent
to each reader type.

1.4 System Overview

unity

Provide a general description of the software system including its functionality and matters
related to the overall system and its design (perhaps including a discussion of the basic design
approach or organization

2. Design Considerations
2.1 Assumptions and Dependencies

● User has read the VR manual

● User contain a Meta Quest 2

● User knows how to work basic tools, and knows how to operate a utility truck bucket

2.2 General Constraints

User Experience

● Consumer will be placed into one scene not many different scenes

● Utility truck bucket cannot be moved

● User cannot interact with environment freely, since products are manually placed

System Constraints

● Meta Quest 2 is the only headset usable for project

2.3 Goals and Guidelines

Describe any goals, guidelines, principles, or priorities which dominate or embody the design of
the system's software. For each such goal or guideline, unless it is implicitly obvious, describe
the reason for its desirability. Feel free to state and describe each goal in its own subsubsection if
you wish. Such goals might be:

● The KISS principle ("Keep it simple stupid!")
● The Software has a mandatory delivery date that must be met (end of the cd3337
class)
● Emphasis on speed versus memory use
● The product should work, look, or "feel" like an existing product

2.4 Development Methods

Briefly describe the method or approach used for this software design. If one or more
formal/published methods were adopted or adapted, then include a reference to a more detailed
description of these methods. If several methods were seriously considered, then each such
method should be mentioned, along with a brief explanation of why all or part of it was used or
not used.

These would be things such as the ‘Water Fall Development’ methods, ‘Agile Development’,
‘Unplanned Mad Scramble Development’, or other development models and variations. Describe
how these were applied in the case of your project.

3. Architectural Strategies
Describe any design decisions and/or strategies that affect the overall organization of the system
and its higher-level structures. These strategies should provide insight into the key abstractions
and mechanisms used in the system architecture. Describe the reasoning employed for each
decision and/or strategy (possibly referring to previously stated design goals and principles) and
how any design goals or priorities were balanced or traded-off. Such decisions might concern
(but are not limited to) things like the following:

● Use of a particular type of product (programming language, database,
library, etc. ...)

c plus plus
● Reuse of existing software components to implement various parts/features of
the system
● Future plans for extending or enhancing the software
● User interface paradigms (or system input and output models)
● Hardware and/or software interface paradigms
● Error detection and recovery
● Memory management policies
● External databases and/or data storage management and persistence
● Distributed data or control over a network
● Generalized approaches to control
● Concurrency and synchronization
● Communication mechanisms
● Management of other resources

Each significant strategy employed should probably be discussed in its own subsection.
Make sure that when describing a design decision that you also discuss any other
significant alternatives that were considered, and your reasons for rejecting them (as well
as your reasons for accepting the alternative you finally chose).

4. System Architecture
This section should provide a high-level overview of how the functionality and responsibilities
of the system were partitioned and then assigned to subsystems or components. Don't go into too
much detail about the individual components themselves (there is a subsequent section for
detailed component descriptions). The main purpose here is to gain a general understanding of
how and why the system was decomposed, and how the individual parts work together to provide
the desired functionality.

This is where the level 0 DFD will probably work best.

At the top-most level, describe the major responsibilities that the software must undertake and
the various roles that the system (or portions of the system) must play. Describe how the system
was broken down into its modules/components/subsystems (identifying each top-level
modules/component/subsystem and the roles/responsibilities assigned to it).

Each subsection (i.e. “4.1.3 The ABC Module”) of this section will refer to or contain a detailed
description of a system software component.

Level 1 Data Flow Diagrams (DFD) and Control Flow Diagrams (CFD) should probably go
here.

Describe how the higher-level components collaborate with each other in order to achieve the
required results. Don't forget to provide some sort of rationale for choosing this particular
decomposition of the system (perhaps discussing other proposed decompositions and why they
were rejected). Feel free to make use of design patterns, either in describing parts of the
architecture (in pattern format), or for referring to elements of the architecture that employ them.
Diagrams that describe a particular component or subsystem in detail should be included within
the particular subsection that describes that component or subsystem.

5. Policies and Tactics

5.1 Choice of which specific products used
IDE: Unity

Blender

5.2 Plans for ensuring requirements traceability
Requirements were discussed at the beginning of the project. If requirements aren’t clear,

the team goes back to SRS documentation to see what requirements have not been met. If a
requirement is not addressed in SRS, then it will be brought up during the meeting with SCE.

5.3 Plans for testing the software
5.3.1 Testing the features of the modules

● Sessions
Testing user experience as we are developing the experience

5.3.2 Engineering trade-offs
● Sessions don’t support different VR headsets

5.3.3 Coding guidelines and conventions
● Coding Guidelines

○ Code must have comments explaining what the purpose of the code
○ Comments at the head of a script explaining the purpose of the script

5.3.4 The protocol of one or more subsystems, modules, or subroutines
● N/A

5.3.5 The choice of a particular algorithm or programming idiom (or design
pattern) to implement portions of the system's functionality

● N/A
5.3.6 Plans for maintaining the software
5.3.7 Interfaces for end-users, software, hardware, and communications
5.3.8 Hierarchical organization of the source code into its physical components
(files and directories)
5.3.9 How to build and/or generate the system's deliverables (how to compile, link,
load, etc.)
5.3.10 Tactics such as abstracting out a generic DatabaseInterface class

6. Detailed System Design
Most components described in the System Architecture section will require a more detailed
discussion. Each subsection of this section will refer to or contain a detailed description of a
system software component. The discussion provided should cover the following software
component attributes:

This is where Level 2 (or lower) DFD’s will go. If there are any additional detailed component
diagrams, models, user flow diagrams or flowcharts they may be included here.

6.1 Main Menu Module (MMM)
6.1.1 Responsibilities

6.1.1.1 Allow the user to select the environment to train in.
6.1.1.2 Environment available will be overhead or underground

6.1.2 Constraints

6.1.2 Language will be in English
Any relevant assumptions, limitations, or constraints for this component. This should
include constraints on timing, storage, or component state, and might include rules for
interacting with this component (encompassing preconditions, post conditions, invariants,
other constraints on input or output values and local or global values, data formats and
data access, synchronization, exceptions, etc.)

6.1.3 Composition

A description of the use and meaning of the subcomponents that are a part of this
component.

6.x.4 Uses/Interactions

A description of this components collaborations with other components. What other
components is this entity used by? What other components does this entity use (this
would include any side-effects this entity might have on other parts of the system)? This
concerns the method of interaction as well as the interaction itself. Object-oriented
designs should include a description of any known or anticipated subclasses, superclass’s,
and metaclasses.

6.x Name of Component (Module)

6.x.1 Responsibilities

The primary responsibilities and/or behavior of this component. What does this
component accomplish? What roles does it play? What kinds of services does it provide
to its clients? For some components, this may need to refer back to the requirements
specification.

6.x.2 Constraints

Any relevant assumptions, limitations, or constraints for this component. This should
include constraints on timing, storage, or component state, and might include rules for
interacting with this component (encompassing preconditions, post conditions, invariants,
other constraints on input or output values and local or global values, data formats and
data access, synchronization, exceptions, etc.)

6.x.3 Composition

A description of the use and meaning of the subcomponents that are a part of this
component.

6.x.4 Uses/Interactions

A description of this components collaborations with other components. What other
components is this entity used by? What other components does this entity use (this
would include any side-effects this entity might have on other parts of the system)? This
concerns the method of interaction as well as the interaction itself. Object-oriented
designs should include a description of any known or anticipated subclasses, superclass’s,
and metaclasses.

6.x.5 Resources

A description of any and all resources that are managed, affected, or needed by this
entity. Resources are entities external to the design such as memory, processors, printers,
databases, or a software library. This should include a discussion of any possible race
conditions and/or deadlock situations, and how they might be resolved.

6.x.6 Interface/Exports

The set of services (classes, resources, data, types, constants, subroutines, and
exceptions) that are provided by this component. The precise definition or declaration of
each such element should be present, along with comments or annotations describing the
meanings of values, parameters, etc. For each service element described, include (or
provide a reference) in its discussion a description of its important software component
attributes (Classification, Definition, Responsibilities, Constraints, Composition, Uses,
Resources, Processing, and Interface).

Much of the information that appears in this section is not necessarily expected to be kept
separate from the source code. In fact, much of the information can be gleaned from the source
itself (especially if it is adequately commented). This section should not copy or reproduce
information that can be easily obtained from reading the source code (this would be an unwanted
and unnecessary duplication of effort and would be very difficult to keep up-to-date). It is
recommended that most of this information be contained in the source (with appropriate
comments for each component, subsystem, module, and subroutine). Hence, it is expected that
this section will largely consist of references to or excerpts of annotated diagrams and source
code.

7. Detailed Lower level Component Design
Other lower-level Classes, components, subcomponents, and assorted support files are to be
described here. You should cover the reason that each class exists (i.e. its role in its package; for
complex cases, refer to a detailed component view.) Use numbered subsections below (i.e.
“7.1.3 The ABC Package”.) Note that there isn't necessarily a one-to-one correspondence
between packages and components.

7.x Name of Class or File

7.x.1 Classification
The kind of component, such as a subsystem, class, package, function, file, etc.

7.x.2 Processing Narrative (PSPEC)
A process specification (PSPEC) can be used to specify the processing details

7.x.3 Interface Description

7.x.4 Processing Detail

7.x.4.1 Design Class Hierarchy
Class inheritance: parent or child classes.

7.x.4.2 Restrictions/Limitations

7.x.4.3 Performance Issues

7.x.4.4 Design Constraints

7.x.4.5 Processing Detail For Each Operation

8. User Interface
8.1 Overview of User Interface
The application is designed to help new Edison employees to use VR to train and prepare for
field work and machine operation. Therefore, it’s important that all of our UI is simple and
accessible to everyone. Our main menu will have the options to complete training, in which users
can view which machinery demo they want to try. The next option will be to view completed
training courses, in which users will be able to view all training simulations that have been done
and have the option to re-complete them. The last major option is Help and Settings, where users
can adjust various settings within the program, such as volume and language.

The user must Log in using their Edison Employee Account in order to start training courses.
The ability to Log in will be in the top right hand corner. Furthermore, the user will be redirected
to the Login page if any of the three initial options are selected while there is no current user
account logged into

8.2 Screen Frameworks or Images

8.3 User Interface Flow Model

10. Requirements Validation and Verification
Create a table that lists each of the requirements that were specified in the SRS document for this
software.
For each entry in the table list which of the Component Modules and if appropriate which UI
elements and/or low level components satisfies that requirement.
For each entry describe the method for testing that the requirement has been met.

Requirements
Validation

Date Description Check

Completeness
checks

Consistency checks

Validity checks

Realism checks

Ambiguity checks

Verifiability

Requirements Verification:

1. Product and product component requirements
a.

2. Standards
a.

3. Organizational policies
a.

4. Test type
a.

5. Test parameters
a.

11. Glossary
An ordered list of defined terms and concepts used throughout the document. Provide definitions
for any relevant terms, acronyms, and abbreviations that are necessary to understand the SDD
document. This information may be listed here or in a completely separate document. If the
information is not directly listed in this section provide a note that specifies where the
information can be found.

12. References
<List any other documents or Web addresses to which this SDD refers. These may include other
SDD or SRS documents, user interface style guides, contracts, standards, system requirements
specifications, use case documents, or a vision and scope document. Provide enough information
so that the reader could access a copy of each reference, including title, author, version number,
date, and source or location.>

Brad Appleton <brad@bradapp.net> http://www.bradapp.net

https://www.cs.purdue.edu/homes/cs307/ExampleDocs/DesignTemplate_Fall08.doc

http://www.bradapp.net
https://www.cs.purdue.edu/homes/cs307/ExampleDocs/DesignTemplate_Fall08.doc

