Senior Design Final Report

Digitization and Modernization of PD
HelpDesk Ticketing System

Elevate

¢ -

N
5 %{\\

&/
4 BAppagh S

Version 1.0 - 05/07/2023

Team Members:

Team: Nshan Kazaryan, Gilbert Hopkins, Hoai Nam Cao, Mark Perez, Brandon Estrada,
Geovanny Huerta, Marie Karibyan, Biruk Mengeste, Kevin Trochez Grajeda

Faculty Advisor: Dr. Chengyu Sun

Liaisons: Deepak Budwani, Brent Modell, Luis Ramirez, Angella Stoke

Table of Contents

1. Introduction
1.1 Background
1.2 Design Principles
1.3 Design Benefits
1.4 Achievements
2. Related Works and Technologies
2.1 Existing Solutions
2.2 Reused Products
3. System Architecture
3.1 Overview
3.2 Data Flow
3.3. Implementation
4. Conclusions
4.1 Results
4.2 Future
5. References

O I 3 L Lt L AR W W W

— e e e
W = e = O

1. Introduction

1.1 Background:

Santa Barbara Public Defender provides legal services across Santa Maria, Santa Barbara,
and Lompoc. The Santa Barbara Public Defender's (SBPD) Office currently utilizes an IT
ticketing system constructed internally and operates through Outlook's email platform. This
system allows SBDP staft to submit and store IT support requests but has limited functionality
and capabilities. The current ticketing system, which operates through email communication, has
presented challenges in maintaining a clear overview and tracking customer support requests.

What is a ticketing system? A ticketing system is a software application for managing
customer support and service requests. It enables organizations to centralize, prioritize, and track
incoming customer inquiries or issues. Businesses can improve their customer service efficiency
and effectiveness by using a ticketing system and increasing customer satisfaction. Standard
features of a ticketing system include a user portal for submitting tickets, automated
notifications, ticket assignment/tracking, and reporting/analytics. There are different ticketing
systems, such as IT help desk ticketing systems, customer service ticketing systems, and event
management ticketing systems. We will be developing a help desk ticketing system.

Utilizing a digitized and modernized ticketing system using Microsoft Power Apps will
effectively address the shortcomings of the current email-based system by providing a
centralized hub and an easy-to-use application that improves the speed and efficiency of support
ticket requests. Therefore, it will enhance customer experience and increase productivity for the
Santa Barbara Public Defender's Office.

1.2 Design Principles:

One of the major problems is that the current system needs more visibility. This makes it
difficult for the IT department to quickly and efficiently identify and resolve customer issues.
Not having the proper visibility can lead to occasional delays in addressing requests and
difficulties in ensuring that all inquiries are attended to promptly. We designed the application
with the end-users in mind. We kept it simple, intuitive, mobile-friendly, and easy to use. PD
HelpDesk is designed to manage and store data efficiently using a robust database. This includes
managing ticket submissions, updates, and tracking. PD HelpDesk is designed with security in
mind. We implemented security measures such as role-based access control, authentication, and
authorization to ensure data privacy. In addition, the application is designed to integrate with
other systems and tools, such as email and comment system, which allows communication
between users and technicians. PD HelpDesk is still in development, so the app's design must

remain simple. This will help ensure that future maintenance and expansions can be easily
managed without unnecessary complexity.

1.3 Design Benefits:

With this project, our proposed solution is to develop a streamlined application that will
offer a wide range of solutions to the SBPD office. Having a centralized hub for support tickets
will gain visibility on the status of the tickets, enabling them to know which tickets are being
worked on and which still need to be addressed. The new system will also be helpful for their
staff by providing an interface that displays all their current support tickets and real-time status
updates. The application can be easily accessed through various mobile and desktop devices,
offering flexibility and convenience for users. This proposed system should improve the staff’s
experience and lead to faster response times. Additionally, it should increase IT productivity and
enable them to use this data for analytical insight. Overall, the new digitized and modernized
ticketing system addresses the current system's problems, gaps, and challenges by introducing a
more efficient, organized, and user-friendly solution to effectively manage and track customer
support requests. By consistently monitoring the application's performance and making
necessary adjustments, we can continuously enhance the user experience

1.4 Achievements

Our project has achieved significant milestones that have greatly enhanced the
functionality and security of the system. One of the notable achievements is the implementation
of data protection through the use of security permissions. By establishing granular access
controls, we have ensured the ticketing system's data's confidentiality, integrity, and availability.
This feature is crucial in protecting sensitive information and preventing unauthorized access.

Another key achievement is the development of a robust database management system.
This has revolutionized the way ticket information is stored and retrieved. The database
architecture has been designed to handle large volumes of data while maintaining data integrity
efficiently. We have improved performance and reliability in storing and retrieving ticket
information through effective data structuring and optimization.

Additionally, our project has successfully delivered a responsive application that provides
users with a customized experience for both mobile and desktop views. The responsive design
ensures that users can seamlessly access and interact with the ticketing system across different
devices. This adaptability enhances user convenience and accessibility, making it easier for staff,
technicians, and administrators to manage and resolve tickets effectively.

2. Related Works and Technologies

2.1 Existing Solutions:

We have looked into some existing frameworks for creating ticketing system applications.
These include popular web development frameworks such as Ruby on Rails, Django, or Laravel,
which provide pre-built components for handling user authentication, data storage, and
web-based user interfaces. Most ticketing systems require some form of data storage, such as
MySQL, PostgreSQL, or Oracle. These databases commonly store customer information, ticket
data, and other relevant information. The front end of a ticketing system is typically built using
HTML, CSS, and JavaScript. Popular front-end frameworks like React, Angular, or Vue can be
used to build rich, interactive user interfaces. Many ticketing systems must integrate with other
systems, such as email clients, customer relationship management (CRM) tools, or other
third-party services. Integration technologies such as RESTful APIs or webhooks can be used to
facilitate these integrations.

The existing ticketing systems that we referred to were ServiceNow, ZenDesk, and Jira.
However, all of these ticketing systems require a subscription or license fee. The subscription fee
typically includes access to the software, updates, and customer support services. The cost of
these subscriptions can vary depending on the size of the organization and the specific features
and services needed. All these ticketing systems are cloud-based. We took inspiration from Jira’s
ticket detail layout and reporting style when developing our solution.

Since SBPD already uses the Microsoft 365 environment, they have access to Power Apps,
which can be integrated with other Microsoft services such as SharePoint and Dynamics 365 and
third-party applications, making it easy to connect to data sources and extend the functionality of
the app. In addition, Power Apps provides an intuitive drag-and-drop interface that allows users
to create apps without extensive programming knowledge. Power Apps allows users to build
apps quickly, reducing the time required to develop custom business solutions. Furthermore,
Power Apps allows users to customize the app's user interface, data sources, and workflows,
making it possible to create highly tailored solutions that meet specific business needs. Since
SBPD needed a mobile-friendly application, we leveraged Power Apps to optimize mobile
device apps, enabling users to access business data and processes from anywhere.

2.2 Reused Products

Power Apps was decided upon by the student team and liaison team as the technology for
developing their ticketing system. Power Apps has a programming language similar to Excel.

Considering that SBPD already had access to Microsoft’s Power Platform licensing, building the
application in this environment was not only cost-efficient. Still, it would allow them to utilize
their current licenses fully.

3. System Architecture

3.1 Overview

Our system is a typical IT ticketing system with many different features and capabilities
built using Microsoft’s Power Apps framework. This software is intended for users to submit
tickets for IT-related issues, view their current tickets, view the knowledge base, and view
system-based notifications such as outages. On the other hand, a technician has all these
capabilities in addition to responding to tickets, assigning tags to tickets, closing out tickets,
sending system-wide alerts, and assigning tickets to themselves or other technicians. The basic
design approach is similar to many websites with a frontend and backend database connection.
The API acts as the middleman between the front and back ends. Essentially, the API grabs the
user requests/actions in the front end and updates the database with the information the user
provided. For example, if a user creates a ticket, the ticket table is updated with respectable
attributes.

Figure 1 provides an overview of the technologies used to create our application.

-
s

L10]
01

0]
IIEIDI]
00

m['.

Office 365 PowerApps Power
Automate

SharePoint List SharePoint Site
Figure 1: DFDO

e Office 365: Office 365 is often used for emails in Power Apps, providing a reliable and
scalable platform for sending and receiving emails. Power Apps can be configured to
send emails automatically based on certain triggers or events, such as when a form is

submitted. Office 365 provides various tools for gathering user information in Power
Apps, such as the user’s name and profile picture. The data collected can then be stored
in SharePoint or other Office 365 data sources and used for reporting and analysis.
Power Apps: It is one of the other two services on Microsoft’s Power Platform.
Microsoft Power Apps is a low-code development platform that enables users to create
custom apps for business purposes. It simplifies the app development process by offering
pre-built templates, drag-and-drop interface design, and integration with various data
sources. This means those who are not technically inclined can create applications. Power
Apps offers pre-built functions that eliminate the need for users to create them from
scratch. Think of the functions in Power Apps as similar to those in Excel. Just as you
can use functions in Excel to manipulate data, you can use functions in Power Apps to
create powerful custom applications without extensive programming knowledge.

Power Automate: With Power Automate, we created workflows that perform various
tasks, such as sending notifications, collecting data, and adding attachments. The
workflows can be triggered by various events, such as a new email arriving in the inbox,
a new record being added to a database, or a new file being uploaded to a cloud storage
service. PD HelpDesk uses Power Automate to pull tickets from the database, send email
notifications when there are ticket updates, and attach files to tickets if needed. By
automating repetitive tasks, Power Automate can save time and reduce errors associated
with manual data entry or other tedious tasks.

SharePoint List: Defines where the app’s data will be stored. The data source was
originally Azure SQL. Design and migration to SharePoint were needed because of
Power Apps licensing issues.

SharePoint Site: The server that hosts our database. SharePoint lists must be stored in a
SharePoint Site for application use. This is our centralized repository for storing and
organizing various types of content, such as document libraries and lists.

3.2 Data Flow

INTERFACE BACKEND INTERACTION

COUNTY of SANTA BARBARA
PUBLIC DEFENDER

Create A Ticket

* Tide

[zoamiimkrorwering

jed is
bre Please
help me set an alternative zoom link.
Thank you.

W Attach file

DATABASE

Tickets s«

title description mainCategory category subCategory dateCreated

Zoom Link not working The zoom link that was 1 9 24 4/3/2023 8:17 PM
and

Figure 2: Interface to Database Interaction

When using the ticketing system, users will interact with the user interface to input data,
including buttons, drop-down lists, combo boxes, and text boxes within a form. The user will
then submit the form once all necessary data has been entered. After submission, the system
moves into the data processing phase. Data processing involves taking the raw data input and
transforming it into a format that can be stored and analyzed by the data storage system.

Backend Interaction: To ensure data integrity, we will validate each input to ensure it matches
the correct data type for its corresponding column in the SharePoint list. Once we have
confirmed the correct schema, we will use the built-in "Patch" function, which utilizes a
key-value object, with the key being the column name and the value being the raw input data.
When a user submits the form, this function will execute, and the next stage will be to store the
data.

After executing the Patch function, a new record will be created in the specified List with a
unique ID. Data retrieval is crucial to this stage as it enables users to access their data easily.
Data retrieval involves querying the data storage system to retrieve specific data needed for the
user interface or other system parts. Proper security measures were implemented to ensure that
sensitive data was not compromised during the flow. When a user creates a new record in any
list, a column is included to keep track of their User ID for later reference. This feature ensures
that staff members have access only to their created tickets, based on the User ID, while techs
and admins have full control access to retrieve all records.

3.3 Implementation:

This project was split into three sections to optimize our time for development.Ticket data,
data management, and user experience. Each section plays a crucial role in presenting the
progressions of the project as a whole.

3.3.1. Ticket Data

Ticket data is gathered through a form users fill out when creating a ticket. The key
information of a ticket includes the title, description of the issue, issue category and subcategory,
location of the incident, and any attachments the user would like to upload. In addition, tickets
will be associated with assignee(s), tags that let technicians categorize tickets, and time stamps of
when the ticket was created and updated. Once users submit their form, the ticket data is sent to
the SharePoint list, creating a new item.

3.3.2. Data Management

Using the SharePoint Site, raw data from the SBPD Power Apps can be efficiently
stored and processed in a SharePoint List. The process involves connecting to Power Apps PD
HelpDesk and retrieving the raw data. This data can then be parsed and formatted into a
structured database using Power Apps Patch Function. The structured data can then be pushed
into the SharePoint Site, which gets routed to the correct SharePoint List to be securely stored
and easily accessed.The SharePoint List can be designed to support the necessary data fields and
relationships to ensure efficient and effective data management. This will enable the data to be
easily updated and overwritten.

3.3.3. User Experience

An intuitive user interface was purposefully crafted to showcase the ticketing system
visually engagingly. This Ul empowers users to seamlessly interact with the framework's
features without requiring prior knowledge or access to its underlying components. In addition,
the application was to be made responsive to accommodate different devices and modern
browsers. The design philosophy of the UI focused on the end users, specifically both older and
younger users.

10

4. Conclusions

4.1 Results

We aimed to achieve four goals initially, and I'm proud to say that we have completed
three of them. We designed and developed a highly functional ticketing system with an
optimized user interface for mobile devices. Additionally, one of our sub-goals was to automate
the ticketing process by implementing rules for assigning technicians to specific tickets based on
their type, and we were successful in achieving this goal. We have constructed a robust database
utilizing Microsoft SharePoint List, which is scalable and can accommodate increasing traffic
demands as SBPD grows. Although we created a robust database using Microsoft SharePoint
list, the application currently provides only basic data analysis. However, SBPD can expand the
development and add more analytics to gain insights into trends.

The product solution produced by our project is a custom-built help desk ticketing system
for the SBPD office that allows staff members to submit tickets for IT issues and allows
technicians to resolve these issues efficiently. The system is built using Microsoft Power Apps
and SharePoint, providing an intuitive user interface for staff members and advanced data
management capabilities for technicians and administrators. The system includes features such as
automated ticket assignment and a knowledge base for IT articles. Overall, the system provides a
robust and efficient helpdesk ticketing system for the SBPD office.

4.2 Future

It's worth considering the potential impact that this project could have on the computer
science field. In today's world, low-code platforms have become more accessible than ever
before. As a result, building custom applications has become significantly easier, especially for
people without a programming background. Our project is an excellent example of how these
low-code platforms can be leveraged to create powerful applications without requiring a huge
budget or extensive development time. By contributing to this growing list of successful projects,
we hope to encourage others to explore the possibilities of low-code platforms and discover what
they can achieve.

There are a few things to remember for future development using Power Apps. Firstly, it's
important to ensure that everyone working on the project understands the Microsoft accounts
they have, as only premium accounts can use premium connectors, such as an SQL database.
This will save time and prevent unnecessary issues down the line. We had to switch from our
SQL database to a SharePoint List since we did not have premium accounts. Luckily we could
port over the same schema; however, all connections in Power Apps had to be updated to use the
share point list connection. Another consideration is the potential issues with the GitHub beta
program. While it's a useful tool, it's still in beta, and we encounter some merging conflicts when
merging our code from the dev branch to the master branch. In these situations, we needed to
force merge to the master branch to work around the issue. Also, fixing merge conflicts can be

11

challenging since the code is often hashed and unreadable. Finally, it's important to ensure that
the SharePoint List permissions are set up correctly. This will prevent unauthorized access to the
data, as people can go to the SharePoint site itself and see all the data if permissions are not set
up. These points will help future projects avoid facing the same issues as ours.

12

5. References:

Microsoft Power Apps documentation: https://learn.microsoft.com/en-us/power-apps/

ZenDesk: https://www.zendesk.com

ServiceNow: https://www.servicenow.com/

Power Apps Community:

https://powerusers.microsoft.com/tS/Power-Apps-Community/ct-p/PACommunity

Microsoft Learn: https://docs.microsoft.com/learn/browse/?products=power-apps

Shane Young's YouTube channel: https://www.youtube.com/user/shaney1220

Power Platform YouTube Channel: https://www.youtube.com/c/PowerPlatform

Reza Dorrani's blog: https://rezadorrani.com/

13

https://learn.microsoft.com/en-us/power-apps/
https://www.zendesk.com
https://www.servicenow.com/
https://powerusers.microsoft.com/t5/Power-Apps-Community/ct-p/PACommunity
https://docs.microsoft.com/learn/browse/?products=power-apps
https://www.youtube.com/user/shaney1220
https://www.youtube.com/c/PowerPlatform
https://rezadorrani.com/

