
Software Design
Document

for

Digitization and Modernization of
PD HelpDesk Ticketing System

Version 1.2 approved

Prepared by Nshan Kazaryan, Marie Karibyan, Kevin Trochez, Mark Perez,
Brandon Estrada, Hoai Nam Cao, Gilbert Hopkins, Geovany Huerta, Biruk

Mengeste

Santa Barbara Public Defender’s Office / Deepak Budwani, Brent Modell, Luis
Ramirez

May 5, 2023

1

Table of Contents... pg 2
Revision History...pg 3

1. Introduction..pg 4
1.1. Purpose...pg 4
1.2. Document Conventions……………………... pg 4
1.3. Intended Audience and Reading Suggestions..pg 4
1.4. System Overview... pg 4

2. Design Considerations... pg 5
2.1. Assumptions and dependencies..pg 5
2.2. General Constraints..pg 5
2.3. Goals and Guidelines...pg 5
2.4. Development Methods... pg 6

3. Architectural Strategies..pg 7
4. System Architecture...pg 8
5. Policies and Tactics..pg 12

5.1. Specific Products Used.. pg 12
5.2. Requirements traceability...pg 12
5.3. Testing the software..pg 12
5.4. Engineering trade-offs..pg 12
5.5. Guidelines and conventions... pg 12
5.6. Protocols.. pg 13
5.7. Maintaining the software... pg 13
5.8. Interfaces..pg 13
5.9. System's deliverables... pg 13

5.10. Abstraction...pg 13
6. Detailed System Design...pg 14
7. Detailed Lower level Component Design…………………………………………..pg 24

7.1 SharePoint Database...pg 24
7.2 Power Apps Controls……………………………………………………….pg 24

8. Database Design……………………………………………………………………pg 26
8.1. SharePoint LIst……...pg 26
8.2. Tables and Entities Overview...pg 26

9. User Interface……………………………………………………………………….pg 29
9.1. Overview of User Interface….……………………………………………..pg 29
9.2. Screen Frameworks or Images..……………………………………………pg 29
9.3. User Interface Flow Model…………………………………………………pg 32

10. Requirements Validation and Verification...pg 35
11. Glossary...pg 40
12. References...pg 40

2

Revision History

Name Date Reason For Changes Version

Initial Draft 9/08/22 Initial draft of document 1.0

Update Document 11/30/22 Filling in info for certain sections 1.1

Final Draft 4/30/23 Updating document and adding
information

1.2

3

1. Introduction
1.1 Purpose

The purpose of this document is to describe in full detail the way we designed our project,
PDHelpdesk. This document can act as a guide on how our application was implemented.

1.2 Document Conventions

All content is written in size 12 Times New Roman font. Important sections and words are in
bold. Every requirement statement has their own priority.

1.3 Intended Audience and Reading Suggestions

The intended audience is the staff members of Santa Barbara Public Defender's office. The
admin/tech role will be given to IT technicians of the department. The rest of the staff members
will be given the user role. If any user is interested in how this application was designed or is
having trouble navigating, you can read through this document for better understanding.

1.4 System Overview

Our system is a typical IT ticketing system that has many different features and capabilities
built-in using Microsoft’s PowerApps framework. It is a software intended for users to be able to
submit tickets for IT related issues, view their current tickets, view the knowledge base, and view
system based notifications such as outages. A technician on the other hand has all these
capabilities in addition to responding to tickets, assigning tags to tickets, closing out tickets,
sending system wide alerts, and assigning tickets to themselves or other technicians.The basic
design approach is similar to a lot of websites that have a frontend and backend database
connection. The API acts as the middle man between the frontend and backend. Essentially, the
API grabs the user requests/actions that happen in the frontend and updates the database with the
information the user provided. For example, if a user creates a ticket, then the tickets table is
updated with the respectable attributes.

4

2. Design Considerations
This section describes many of the issues which need to be addressed or resolved before
attempting to devise a complete design solution.

2.1 Assumptions and Dependencies

Technologies used for PD HelpDesk.

● PowerApps: This is a Microsoft framework part of the Power platform that allows
developers with little technical experience to build powerful web/mobile applications. It
also provides a rapid development environment to build custom apps for any business
needs.

● Microsoft SharePoint: web-based collaboration and content management platform
developed by Microsoft. It allows users to create and manage websites for sharing and
collaborating on documents, lists, and calendars. SharePoint can also be used for business
intelligence, workflow automation, and integration with other Microsoft applications
such as Office and Teams. SharePoint acts as the database for PD HelpDesk

● Power Automate: Cloud-based service provided by Microsoft that allows users to create
automated workflows between different applications and services without needing to
write code.

● Internet Browsers: Any browser such as Microsoft Edge, Google Chrome, Firefox, etc..
will work.

The app depends on the MS PowerApps environment and users must use the application through
PowerApps “play” feature. It is assumed that users have valid Santa Barbara credentials to play
the application along with having Office 365 PowerApps Standard Licenses.

2.2 General Constraints

● Users need a valid SBPD account with appropriate PowerApps licensing.
● Stable internet connection.
● Any browser can be used but PowerApps is needed to launch the application. PowerApps

mobile is needed for users that are using the app in a mobile environment. However,
Edge is the preferred browser for the Public Defender’s environment.

2.3 Goals and Guidelines

The end product should be a fully functional ticketing system. The website also must be intuitive
for the sole use by SBPD technicians and attorneys/staff members. This product should fully be
able to function in a mobile environment. The product should work, look, or “feel” like
ServiceNow, ZenDesk, etc.

5

2.4 Development Methods

We are using the Agile Development method. Agile is an iterative approach to project
management and software development that helps teams deliver value to their customers faster
and with fewer headaches. Instead of betting everything on a "big bang" launch, an agile team
delivers work in small, but consumable, increments. Every week, new tasks and assignments are
given to team members and the team has quick every few week deadlines. This iterative
approach allows us to determine where we are at on the project and allows us to handle issues as
they arise. The components/features of the web application have been divided up among the
group members to optimize time and efficiency.

6

3. Architectural Strategies
PowerApps Canvas was used to create the PD HelpDesk application. PowerApps follows a
model-driven app architecture strategy. The model-driven app architecture separates the user
interface and logic from the data model, allowing for more flexibility and scalability.

The app’s architecture consists of the following components:
● Data source: Defines where the app’s data will be stored, in this case SharePoint. The

data source was originally Azure SQL. Design and migration to SharePoint was needed
because of PowerApps licensing issues. (SQL connector is a premium feature)

● Model-driven app framework: The framework provides the UI components, data
handling, and security features. It allows developers to design the user interface and
define the app’s business logic.

● User interface: The user interface includes the screens, forms, and controls that users
interact with to access and manipulate data. Canvas uses prebuilt UI elements that are
available through Microsoft’s low code solution.The user interface also provides relevant
information about a ticket’s status and other relevant information.

● Security: PowerApps Canvas provides a range of security options such as data loss
prevention, conditional access, and multi-factor authentication. Depending on the
sensitivity of the data being stored and processed in the app, additional security measures
are applied to protect data.

● Power Automate: With Power Automate, users can create workflows that perform a
variety of tasks, such as sending notifications, collecting data, and synchronizing files.
The workflows can be triggered by various events, such as a new email arriving in the
inbox, a new record being added to a database, or a new file being uploaded to a cloud
storage service. PD HelpDesk uses Power Automate to pull tickets from the database,
send email notifications when there are updates on tickets, and attach files to tickets if
need be. By automating repetitive tasks, Power Automate can save time and reduce errors
associated with manual data entry or other tedious tasks.

● Communication mechanism: PD HelpDesk supports communication between users and
system administrators/technicians. The system provides email notifications and instant
messaging to ensure that users can communicate effectively with each other.

● Extensibility: PD HelpDesk is designed to accommodate future enhancements and
changes. The system should be modular and scalable to enable the addition of new
features and functionalities without affecting existing functionality.

● Error Detection and Recovery: PowerApps provides detailed error messages that can help
developers quickly identify and resolve errors. Error messages can appear in various
places within the PowerApps interface, such as the formula bar, data source view, and
app screen. For example, the formula bar provides syntax highlighting, autocomplete
suggestions, and error highlighting to help identify and resolve issues with formulas.

7

4. System Architecture
We have separated the system into 3 sections, User Base, Devices, and Power Apps. Our
application was developed using Power Apps as well as Power Automate which are a part of the
Power Platform, Sharepoint was also used as a database technology to store data.

Figure 1: DFD level 0, shows the overview of the entire system.

User Base: Everyone who will use this application, and fall into one of three roles. They are to
provide data to the application and will receive data based on their privilege levels.

Devices: These act as the middle men between those using the application and the application
itself. Can be any device that can connect to the internet, display data, accept input in the form of
touch or tactile keystrokes, and have at least a storage component to both access and store
information. The application sends and receives requests from these devices in order to function.

Power Platform: This is an assortment of technologies, one of them being Power Apps, that was
used to create the ticketing system. Listed are the modules that are responsible for particular
tasks, such as ticket creation, dashboards, ticket management, as well as analytics. It relies on
requests from devices usually in the form of data to send or receive. it interacts with Sharepoint,
where it is used as a database, to store, retrieve, or update data. Examples of data interacted with
are tickets, comments, and images.

8

Figure 2: DFD level 1 of our system, when a module accesses Sharepoint it will contain a small
database icon.

4.1 Splash Screen

This is the entry point into the application; it accesses Sharepoint to retrieve data, and is
accessible once, when the application is run for the first time.

4.2 Home

Acts as a hub module, and involves itself with 4 other modules, those being: Create A Ticket,
My Tickets, Manager Tools (admin/tech only), and Knowledge Base.

4.3 Category Select

This module offers a selection based on categories retrieved from Sharepoint, and is connected to
Create A Ticket as it will pass data into the module.

9

4.4 Single Ticket Info

This module is accessed after a selection is made from the My Tickets module or All Tickets
module, it accesses Sharepoint to retrieve ticket data to display, and accepts user data to store
comment data.

4.5 Ticket Metrics

This module can be accessed from the Manager Tools module, and uses Sharepoint to retrieve
ticket data to display simple analytics.

4.6 My Tickets

This module is accessible after the Success Module, accepts input from users to search through
tickets associated with the user, Sharepoint retrieves ticket data. Can interact with the Category
Select module to perform the ticket creation process anew.

4.7 Assign Role

This module is accessible from the Manager Tools module, it accepts users input to update data
stored in Sharepoint.

.4.8 Success

This module is only accessible after a ticket has been created, it is associated with the Create A
Ticket module, and the My Tickets Module

4.9 Create Alert

Module accessible from the Alert Manager module, it has two functions, one where data is
pulled from Sharepoint to update, and another to store data when creating a new alert. Also
redirects to the Alert Manager module upon function completion.

4.10 Alert Manager

Accessible from the Manager Tools module, only retrieves data from sharepoint to display, and
accepts minimal user input. Can access the Create Alert module to update an existing alert, or to
create a new alert.

10

4.11 Tag Manager

Accessible from the Manager Tools module, accepts user input to create, remove, or update tags
and accesses Sharepoint to perform these actions accordingly. Displays tag data retrieved from
Sharepoint as well.

4.12 Create A Ticket

Accessible after the Category Select module, receives data to prefill a template, accepts
additional user input to create ticket data, and sends it to be stored in Sharepoint. It also
immediately interacts with the Success module.

4.13 Manager Tools

Another module that acts as a hub, input allows for interacting with other modules , those being:
Tag Manager, All Tickets, Alert Manager, Ticket Metrics, and Assign Role.

4.14 All Tickets

Accessible from the Manager Tools module, uses Sharepoint to display a table of tickets from
retrieved data. A selection here will redirect to the Single Ticket Info module.

4.15 Knowledge Base

Accessible from the Home module, retrieves data from Sharepoint to display results, as well as
populate popular search terms. Input used to search and sort through data stored on Sharepoint.

11

5. Policies and Tactics
Building a computer software can be a difficult process with many phases and decision

points along the way. In this section, we'll go over several policies and strategies that can assist
guide the development process and assure the success of your project.

5.1 Choice of which specific products used
5.1.1 Microsoft SharePoint

5.1.2 Microsoft Power Apps

5.1.3 Github

5.2 Plans for ensuring requirements traceability
Traceability of requirements refers to the ability to track and verify the relationships

between project requirements and project deliverables. It is an important part of project
management and software development since it guarantees that the final product fits all of the
requirements outlined in the project plan. Here are some strategies for maintaining requirements
traceability:

5.2.1 Develop a Requirements Traceability Matrix (RTM): An RTM is a document that
connects project requirements to system design and implementation. We can track and verify the
relationship between project requirements and project deliverables by constructing an RTM.

5.2.2 Conduct Regular Reviews: Another technique to maintain requirements traceability
is to conduct regular reviews of the project plan and requirements. Reviews aid in identifying
any discrepancies or inconsistencies in the project plan and ensuring that all requirements are
completed.

5.2.3 Document modifications: documenting any modifications made to the project plan
or requirements can help us ensure the traceability of requirements. You can trace the evolution
of the project and verify that all changes are appropriately accounted for and implemented by
documenting modifications.

5.3 Plans for testing the software
Begin by defining the test objectives in detail based on the software's requirements and

expectations of users. Identifying the precise functionalities, features, and performance
requirements that must be tested is part of this process. We used mock data to test our
application’s requirements and ensured that the mock data reached the database.

5.4 Engineering trade-offs
● N/A

5.5 Coding guidelines and conventions
We used consistent naming conventions to make the code easier to read and understand.

Variables, functions, and classes are named in a way that appropriately reflects their role.
Consistent indentation and formatting make the code easier to read and understand.

12

5.6 Protocols
● N/A

5.7 Plans for maintaining the software
● Performance Optimization: As the software is used, system functionality can deteriorate

over time. Performance testing and optimizing on a regular basis can assist keep the
system efficient and responsive.

● Security patches: Software security flaws can result in data breaches, system outages, and
other issues. By resolving vulnerabilities as they develop, regular security upgrades can
help prevent these concerns.

Plans to maintain the software will be left to the Public Defender’s IT department.

5.8 Interfaces for end-users, software, hardware, and communications
Staff members, IT technicians, and administrators work with the PDHelpDesk interface.
The user interface is intuitive, user-friendly, and visually appealing. The interface should
also provide feedback to the user and assist them through the system's many operations.

5.9 How to build and/or generate the system's deliverables (how to compile,
link, load, etc.)
The app is launched through the PowerApps environment or through the app’s “web link”
provided to users when they click on the app’s details.

● Understand the Requirements: Understanding the requirements is the initial step in
building and generating system deliverables. This includes determining the system's
purpose, the users and their demands, as well as the system's functional and
non-functional requirements.

● Design the System: Once the requirements have been determined, the system must be
designed. This entails developing a thorough architecture, defining the components and
modules, and defining the interfaces between them.

● Develop the System: The development phase begins once the system design is finalized.
This includes coding the system's many components and modules, integrating the
components, and testing the system to ensure that it fits the requirements.

● Deploy the system: After the system and its deliverables have been tested and certified,
the system is ready to be deployed. This includes installing software, configuring the
system, and training users on how to utilize the system successfully.

5.10 Abstraction
● N/A

13

6. Detailed System Design

6.1 Splash Screen

6.1.1 Responsibilities

Splash Screen is responsible for authenticating the user and initializing any global
variables. Once the user is authenticated, they are redirected to the Home Screen.

6.1.2 Constraints

All users are assumed to be part of SBPD and have the proper credentials and licensing to
use this application. If the user does not have a valid user role, they are redirected to User
Not Valid Screen.

6.1.3 Composition

N/A

6.1.4 Uses/Interactions

Initializes the user information, collections, and global variables used on the other screens
within the application.

6.1.5 Resources

Splash screen needs access to the SharePoint database to determine the user’s role and
initialize the user’s information and global variables.

6.1.6 Interface/Exports

N/A

6.2 Home Screen

6.2.1 Responsibilities

The Home Screen serves as the landing page of PD HelpDesk and is responsible for
navigating to other screens. Home displays two different views based on whether the user
has a staff or an admin/tech role.

14

6.2.2 Constraints

All users will need to be authenticated beforehand, in the ‘Splash’ screen, in order to
have access to this screen.

6.2.3 Composition

N/A

6.2.4 Uses/Interactions

Home allows all users to navigate to other screens within the application. Certain options
will be omitted based on the user's role.

6.2.5 Resources

N/A

6.2.6 Interface/Exports

N/A

6.3 Category Select

6.3.1 Responsibilities

Category Select is responsible for selecting a main ticket category. This screen displays
two different views based on whether the user has a staff or an admin/tech role.

6.3.2 Constraints

N/A

6.3.3 Composition

N/A

6.3.4 Uses/Interactions

This screen provides all users with an easy to use interface that allows them to select a
main category before proceeding to the Create A Ticket screen.

15

6.3.5 Resources

Category Select needs access to the SharePoint database to display the proper main ticket
category options.

6.3.6 Interface/Exports

N/A

6.4 Single Ticket Info

6.4.1 Responsibilities

Single Ticket Info displays the relevant details for a specific ticket and supports
communication between the staff and the admin/tech through the use of a comment
section. This screen displays two different views based on whether the user has a staff or
an admin/tech role.The admin/tech view has access to closing a ticket, assigning
assignees, and adding tags. Whereas a normal staff user doesn't.

6.4.2 Constraints

Only admin/tech roles will have the ability to make changes on individual tickets on this
screen.

6.4.3 Composition

N/A

6.4.4 Uses/Interactions

Single Ticket Info provides a clean user interface for admin/tech to manage individual
tickets once they are selected from either the All Tickets or My Tickets screen. But,
normal staff will only be able to view single tickets.

6.4.5 Resources

Single Ticket Info requires access to the SharePoint database to retrieve and update ticket
data.

6.4.6 Interface/Exports

N/A

6.5 Ticket Metrics
6.5.1 Responsibilities

Ticket Metrics is responsible for displaying the ticket received, resolved, and assigned to
the user for the current month.

16

6.5.2 Constraints

This screen is only accessible to users with admin/tech roles.

6.5.3 Composition

N/A

6.5.4 Uses/Interactions

N/A

6.5.5 Resources

Ticket Metrics requires access to the SharePoint database to retrieve the number tickets
received, resolved, and assigned to a user.

6.5.6 Interface/Exports

N/A

6.6 My Tickets
6.6.1 Responsibilities

My Tickets is responsible for displaying the user’s tickets. This screen also provides users
the option to search and filter their tickets.

6.6.2 Constraints

Certain Filters are only accessible to admin/tech roles.

6.6.3 Composition

My Tickets consists of the following subcomponents:

● Search Bar - Text input box that allows all users to search by ticket title and
exact ticket id.

● Filter Panel - Displays a list of filter options based on the user role
○ My Tickets: Filters the tickets that are created by the user. This option is

set as default for staff users.
○ My Assigned: Filters the tickets that are assigned to the user. Only visible

to admin/tech roles and set as their default option.
○ Status: Filters tickets by ticket status.
○ Tag: Filters tickets by tag. Only visible to admin/tech roles.

6.6.4 Uses/Interactions

This screen will interact with the Home screen. This screen is accessible from the Home
Screen.My Tickets redirects to the Single Ticket Info once a ticket is selected. It also
redirects to Category Select when the new ticket button is pressed.

6.6.5 Resources

17

My Tickets requires access to the SharePoint database to retrieve the user’s tickets and
the list of tags.

6.6.6 Interface/Exports

N/A

6.7 Assign Role
6.7.1 Responsibilities

Assign Role is responsible for allowing admin/techn to change a user’s role.

6.7.2 Constraints

This screen is only accessible to users with admin/tech roles.

6.7.3 Composition

N/A

6.7.4 Uses/Interactions

This screen will interact with the Manager Tools. This will only be accessible from the
Manager Tools screen.

6.7.5 Resources

This screen requires access to the SharePoint database to retrieve all users from the
SharePoint database.

6.7.6 Interface/Exports

N/A

6.8 Success
6.8.1 Responsibilities

Displays the ‘Success’ screen when a ticket is created successfully.

6.8.2 Constraints

A ticket has to be created successfully.

6.8.3 Composition

N/A

6.8.4 Uses/Interactions

This screen interacts with the ‘Create A Ticket’ screen. Once a ticket is created
successfully, it will relay to the ‘My Tickets’ screen afterwards.

6.8.5 Resources

18

N/A

6.8.6 Interface/Exports

N/A

6.9 Manager Tools
6.9.1 Responsibilities

Displays all the tools that are accessible to admin/tech users.

6.9.2 Constraints

This screen is only accessible to users with admin/tech roles.

6.9.3 Composition

N/A

6.9.4 Uses/Interactions

This screen interacts with All Tickets, Tag Manager, Alert Manager, Ticket Metrics, and
Assign Role screens. Users can only access the screens above through Manager Tools.

6.9.5 Resources

Manager Tools will require access to the SharePoint database, in order to determine if the
user's role is either ‘admin’ or ‘tech’.

6.9.6 Interface/Exports

N/A

6.10 All Tickets
6.10.1 Responsibilities

Displays all the tickets from the SharePoint database. The tickets displayed are from the
last 30 days, and are sorted in ascending order (this means that the most recently created
tickets are always displayed first) with the assistance of pagination. Also, this screen
provides admin/tech users the ability to search and filter the tickets.

6.10.2 Constraints

This screen is only accessible to users with admin/tech roles.

6.10.3 Composition

This screen is composed of the following components:

● Pagination - Provides the user with the ability to get the next or previous batches
of tickets.

19

● Search Bar - Text input box that allows admin/tech to search by ticket title and
exact ticket id.

● Filter Panel - Displays a list of filter options exclusive to this screen.
○ Unassigned/Assigned: Filter tickets by ticket assignment.
○ Status: Filters tickets by ticket status.

6.10.4 Uses/Interactions

This screen will interact with the Manager Tools and Single Ticket Info screen. This will
only be accessible from the Manager Tools screen. Admin/Tech users will be able to
select any ticket in order to view more information, which will redirect them to the Single
Ticket Info screen. Additonally, Filters and the Search Bar will be at the admin/tech users
disposal in order to view tickets past the 30 days.

6.10.5 Resources

All Tickets will require access to the SharePoint database, in order to determine if the
user's role is either ‘admin’ or ‘tech’, as well as grabbing all the tickets from the database.

6.10.6 Interface/Exports

N/A

6.11 Create A Ticket
6.11.1 Responsibilities

Provides an easy to use UI for users to enter and submit their ticket requests.

6.11.2 Constraints

All users are required to enter a ticket title, description, category, sub category (if
applicable), and location in order to submit a ticket request.

6.11.3 Composition

N/A

6.11.4 Uses/Interactions

This screen interacts with the Category Select and Success Screens. At the start of
creating a ticket, the users will have to choose a category from the Category Select
screen. Afterwards, it will redirect them to the Create A Ticket screen and prefill the
ticket form with the data gathered from the Category Select screen. Once the user submits
their ticket successfully, the user will be redirected to the Success Screen.

6.11.5 Resources

Create A Ticket will require access to the SharePoint database to retrieve category data,
and to store the ticket request in the SharePoint database.

20

6.11.6 Interface/Exports

N/A

6.12 Alert Manager

6.12.1 Responsibilities

Displays the alerts that have not expired and provides an easy to use UI for managing the
alerts.

6.12.2 Constraints

This screen is only accessible to users with admin/tech roles.

6.12.3 Composition

N/A

6.12.4 Uses/Interactions

This screen interacts with the Manager Tools and Create Alert Screens. Alert Manager is
only accessible from the Manager Tools Screen. Admin/Tech users will be able to create
alerts at the click of a button, or edit existing alerts by clicking them. Both options will
redirect them to the Create Alert screen.

6.12.5 Resources

Alert Manager requires access to the SharePoint database to retrieve alert data.

6.12.6 Interface/Exports

N/A

6.13 Create Alert

6.13.1 Responsibilities

This screen provides an easy to use UI for admin/tech to edit or create their alerts.

6.13.2 Constraints

This screen is only accessible to users with admin/tech roles.

6.13.3 Composition

N/A

6.13.4 Uses/Interactions

This screen will interact with the Alert Manager screen. Admin/Tech will be using a form
to create alerts, and once successful they will be redirected to the Alert Manager screen.

6.13.5 Resources

21

Create Alert requires access to the SharePoint database to store alerts data.

6.13.6 Interface/Exports

N/A

6.14 Tag Manager

6.14.1 Responsibilities

This screen provides an easy to use UI for managing Tags.

6.14.2 Constraints

This screen is only accessible to users with admin/tech roles.

6.14.3 Composition

This screen is composed of the following components:

● Search Bar - Text input box that allows admin/tech to type the name of their
tickets.

6.14.4 Uses/Interactions

This screen will interact with the Manager Tools. This screen is only accessible from the
Manager Tools screen. Admin/Tech will be able to create and delete tags.

6.14.5 Resources

Tag Manager requires access to the SharePoint database to store and update tags.

6.14.6 Interface/Exports

N/A

6.15 Knowledge Base

6.15.1 Responsibilities

This screen provides an easy to use UI for all users to look up additional information that
the users may want to learn more about.

6.15.2 Constraints

N/A

6.15.3 Composition

This screen is composed of the following components:

● Search Bar - Text input box that allows users to lookup information based on
keywords and titles.

6.15.4 Uses/Interactions

22

This screen will interact with the Home screen. This screen is accessible from the Home
Screen. All users will be able to use the Search Bar to retrieve information from the
Knowledge Base stored in SharePoint.

6.15.5 Resources

Knowledge base requires access to the SharePoint database to retrieve data.

6.15.6 Interface/Exports

N/A

23

7. Detailed Lower level Component Design

7.1 SharePoint Database

7.1.1 Classification

SharePoint is classified as a database system.

7.1.2 Processing Narrative (PSPEC)

N/A

7.1.3 Interface Description

Developers use a GUI interface to interact with the SharePoint Database, in our case we
used Powerapps to directly interact with the SharePoint Database.

7.1.4 Processing Detail
7.1.4.1 Design Class Hierarchy

N/A

7.1.4.2 Restrictions/Limitations
Limited when creating relationships due to not having Foreign Keys accessible.
Must have a Microsoft 365 account to access.

7.1.4.3 Performance Issues

When submitting the individual data entries, there are not many performance
issues. If there is a high volume of data being entered into the database, then there
might be some delays.

7.1.4.4 Design Constraints

N/A

7.1.4.5 Processing Detail For Each Operation

The program’s backend creates and updates data on the SharePoint Database
using Powerapps Patch API that provides ways to interact with data and perform
CRUD operations.

7.2 Power Apps Controls

7.2.1 Classification
The Power Apps Control component provides a visual allowing users to interact with
tickets inside the PD HelpDesk Ticketing System. The Power Apps controls can be

24

classified into data input controls, data presentation controls, layout and navigation
controls, data integration controls and custom controls.
7.2.2 Processing Narrative (PSPEC)
N/A

7.2.3 Interface Description
The Power Apps Control interacts with other components like data sources and APIs to
get or update tickets using input fields, buttons, and other user interactions in the
ticketing system.

7.2.4 Processing Detail

7.2.4.1 Design Class Hierarchy
Provides relationships toward components and gives an overview of key
functionalities within the user interface.

7.2.4.2 Restrictions/Limitations
The functionality may be subject to the specific licensing options.

7.2.4.3 Performance Issues
N/A

7.2.4.3 Designs Constraints
The Power Apps Controls were designed for the user to give as much information
about the issue they have on their ticket and to upload files to give a visual as
well.

7.2.4.5 Processing Detail For Each Operation
When the user creates a ticket, it asks to input a title, category, sub category,
specific issue, description, location and attachments if there are any.
The user, technician, staff, or admin are able to close tickets. However, if the user
clicks on close ticket, a small pop up will show up and ask for the user to give a
description on how the ticket was resolved.

25

8. Database Design

8.1 Sharepoint List
The database used is Microsoft SharePoint List. The database schema comprises 11 tables, each
with a specific purpose in the ticketing system. The tables are Users, Category, Tags,
Locations, Alerts, Tickets, Comments, Ticket

8.2 Tables and Entities Overview
All tables will have a unique ID column. This ensures each record will have a unique ID with

no duplications, so when querying the database for a record we will not get multiple results with
the same ID.

26

The Users table is the first table we created, and it stores the details of every user in the
system. The table contains fields for the user's first name, last name, full name, user role, and
unique email address. The user role field has three options: staff, tech, and admin, which
determine the level of access the user has in the system.

The Category table columns are category's name, parentId, and technicianOnly. The parentId
serves as a foreign key reference to the same "Category" table and identifies the ID of the
category that is a subcategory of the current record. The technicianOnly column is a binary field
that determines accessibility, with a value of 0 indicating availability for all users and a value of
1 allowing access only to tech and admin users.

The Tags table has only two columns: a unique ID and a name column. Since this table will
only be accessed by tech and admin, there is no need for additional fields.

The Locations table follows a similar structure as the Tags table, but with the key difference
that it will be accessible to all users of the ticketing system. Therefore, it will have a name
column, and no additional fields will be needed.

The Alerts table contains a column for titleText, messageText, creatorId, dateCreated,
lastUpdated, and dateExpired. The titleText column stores a text of 255 characters or less, while
the messageText column is a text field type that can store longer messages to convey alerts
within the app. The creatorId column is a foreign key that stores the ID from the Users table of
the person who created the alert. The dateCreated and lastUpdated columns hold date values,
while the expiredDate column can be either null or a date.

The Ticket table is a crucial component of our ticketing system and contains several foreign
keys. It includes a title, description, mainCategory, category, subCategory, dateCreated,
dateClosed, metricDate, creatorId, assignTo, status, lastUpdated, updatedBy, resolution,
locationId, tags, addAssignees, and hasAttachment columns. The mainCategory, category, and
subCategory columns store the unique ID from the Category table, while creatorId, assignTo, and
updatedBy columns store the ID from the Users table. Lastly, for the foreign keys, the locationId
column stores the ID from the Locations table. Tags and addAssignees columns, although related
to Tags and Users tables, are text fields that store record names in CSV format for multiple tags
or assignees. The title, description, and resolution columns are text fields. The dateCreated,
dateClosed, metricDate, and lastUpdated columns are date and time fields, except for the
metricDate column, which is in month and year format. The status column is a text field that
contains only "open" or "closed." Lastly, the hasAttachment column is a binary field with a value
of 0 for no attachments and 1 for the presence of an attachment.

The Comments table is a key component of our ticketing system, allowing users to leave
notes and updates on specific tickets. It contains a foreign key reference to the associated ticket
in the ticketId column. The creatorId column also stores a foreign key reference to the user who
created the comment. The dateCreated and lastUpdated columns store the date and time when the
comment was created or last updated. Finally, the message field is a text field that can hold a
substantial amount of text. Overall, the Comments table is closely linked to the Tickets and Users
tables, allowing seamless collaboration and communication between users and technical staff.

The Ticket Attachment table stores any files or images associated with a ticket. It contains a
foreign key reference to the Tickets table called ticketId. In addition, the table includes fields for
the file name (stored as a text field called "name"), the file itself (stored as a binary field called
"file"), the date the file was last modified (stored as a date field called "modified"), and the user
who last modified the file (stored as a text field called "modifiedBy" containing the user's full
name).

27

The KB Tags table will function in the same way as the Tags table; however, it will also
include an additional column called Hits, which will be a number type used to track how many
times a tagged article has been requested by a user.

The KB Articles table will have the same structure as the Ticket Attachment table but will
also include additional fields for Tags, which will be a comma-separated values (CSV) text field,
and an article blurb, which will be a text field.

The Ticket Automation Rules table is essential for automating the ticket-assignment process
and ensuring that the appropriate issues are routed to the appropriate technicians for handling.
This table includes a name field for the technician's name, and foreign keys to the Users,
Category, and Locations tables (stored as userId, categoryId, and locationId columns,
respectively) for storing their corresponding IDs.

28

9. User Interface

9.1 Overview of User Interface
Before the user gets to PD Helpdesk, they must be logged in using their Microsoft 365

Office credentials. Once they have their credentials, the application will authenticate them using
Microsoft’s Security Groups and they will have the role of either user (staff), technician or
admin. The first thing any user will see is the home page. The home page consists of a
hamburger menu for navigation along with big buttons for less tech savvy users. The options the
user has include the following: Create a Ticket, My Tickets, Knowledge Base, and, for admin,
Manager Tool. Users can also use a keyword search in the knowledge base if they are having
trouble finding something. The technician and admin roles will have more functionalities/buttons
which they can navigate to in the Manager Tool such as All Tickets, Tag Manager, Alerts
Manager, Tickets Metrics, and Assign Role.

One of the most important features of the application is Create a Ticket. Once navigated
to this screen from the navigation menu, if staff need to create a new ticket, they simply click on
the "Create a Ticket" button, which takes them to a category page where they can select the
appropriate issue category. From there, the user will be asked to fill out a series of drop-down
menus and text boxes to describe their support request. Once the ticket is submitted, the user can
track its progress and receive live updates on their request from the "My Tickets" page.

When a technician logs into the app, they're presented with the home screen, where they
can navigate to "My Tickets". This feature allows them to view all the tickets that are currently
open and assigned to them, filter tickets by status, and perform keyword searches. Once they
select a ticket, they can view additional details about the issue, add comments, assign additional
technicians if necessary, and add relevant tags. After the technician completes the support ticket,
they can click the "Close Ticket" button and provide a resolution. This resolution information is
sent to the staff via email and is also recorded in the app for future reference.

In addition to these important features, users can also use the knowledge base to see
media or text based guides on popular issues.

9.2 Screen Frameworks or Images
9.2.1. Splash Screen

9.2.2. Home

29

9.2.3. Create a Ticket

9.2.4. My Tickets

9.2.5. Individual Ticket

9.2.6. Resolve a Ticket

30

9.2.7. Knowledge Base

9.2.8. Manager Tools

9.2.9. All Tickets

9.2.10. Tag Manager

31

9.2.11. Assign Role

9.2.12. Create an Alert

9.2.7. Alert Manager

9.3 User Interface Flow Model
During our requirements-gathering process, SBPD provided us with a flowchart

outlining their desired approach. The flowchart begins with user login, with three types of
user roles specified. In this discussion, we will focus specifically on user requirements.
After logging in, users should have access to Tickets, Alerts and Messages, their profile,

32

and the knowledge base. Two key requirements regarding tickets are creating new tickets
and viewing "My Tickets". For creating a new ticket, users should be able to add
comments and attach files to explain their issue. In "My Tickets", users should be able to
view and sort/filter all their created tickets. The ability to create, update, and monitor
their own tickets is a crucial aspect of our project requirements. The Tech and Admin
roles have similar requirements as the User role, but with additional access and sections
such as the Admin Manager.

33

34

10. Requirements Validation and Verification

Requirement Satisfied By Testing Method

The system shall authenticate
users and assign respective
roles.

Splash Screen + Users
SharePoint List

Attempt to login with
valid/invalid credentials.
Assign various roles to users
and verify they have
appropriate access

The system shall protect data
for all users.

SharePoint Security Groups +
List Item Permissions

Attempt to access protected
data without authorization or
through unauthorized means,
and verify that the system
prevents such access.

The system shall provide an
automated workflow for
ticket assignment.

Automation Rules SharePoint
List

Creating new tickets with
various criteria and verifying
that they are assigned to the
appropriate user or group
based on the defined rules.
Test various scenarios, such
as assigning tickets based on
category and geographic
location.

The system shall provide a
navigation menu for users to
navigate to different screens.

Navigation menu component
(All screens)

Verifying that it is present on
all screens and allows users to
navigate to different areas of
the application. Test that the
menu displays the correct
options based on user role
and permissions.

The system shall have
responsive design.

PowerApps Use of
Containers + Formulas

Test the responsiveness of the
system on different devices
and screen sizes, including
desktops, laptops, tablets, and
smartphones. Verify that the
user interface adjusts
dynamically to fit the
available screen size, and that
all functionality and content
is accessible and usable
regardless of screen size.

35

The system shall provide all
users with the ability to create
a ticket.

Create A Ticket Screen +
Create A Ticket Form

Create a new ticket and verify
it appears in the
system/database.

The system shall allow all
users to attach files when they
are creating a ticket.

Attach Files Component +
Create A Ticket Screen

Test the attachment
functionality by verifying that
all users are able to attach
files when creating a ticket.
Ensure that the system
accepts a variety of file types,
and that there are no file size
limits or other restrictions that
would prevent users from
attaching necessary files.

The system shall provide all
users with the ability to view
all their tickets.

My Tickets Screen Test the ticket viewing
functionality by verifying that
all users are able to view a list
of their own tickets, and that
the list contains all necessary
information such as ticket
number, status, and category.

The system shall provide
technicians and admins with
the ability to resolve a ticket.

Resolve Ticket Screen +Close
Ticket Button

Verifying that technicians are
able to access a ticket detail
view, which displays all
relevant information about
the ticket, including the
ability to close the ticket.
Ensure that the ticket is
closed when the Close button
is clicked, and that the system
prevents the ticket from being
closed if required fields are
not completed or if the ticket
is already closed.

The system shall allow all
users to use filters on my
tickets screen.

Filter Tickets Power
Automate

Test the filter functionality by
verifying that all users are
able to access My Tickets
screen and apply various
filters to the displayed tickets,
such as by status and tag.
Ensure that the filter
component is easy to use and
intuitive,

36

The system shall allow all
users to keyword search on
my tickets screen.

Search Tickets Power
Automate

Test the search functionality
by verifying that all users are
able to access My Tickets
screen and use a search bar
component to search for
tickets by title and/or ticket
number. Ensure that the
search bar is prominently
displayed and easy to use, and
that it returns relevant results
in a timely manner.

The system shall display
relevant ticket information
when users select a ticket to
view.

Single Ticket Info Screen Test the ticket details
functionality by verifying that
all users are able to select a
ticket from the My Tickets
screen and view all relevant
information related to that
ticket, such as the status,
description, assigned
technician, and any
comments,etc. Ensure that the
ticket details component is
easy to navigate and provides
all necessary information in a
clear and organized manner.

The system shall allow all
users to add comments on a
ticket.

Single Ticket Info Screen +
Add Comment Button

Test the comment
functionality by verifying that
all users are able to access a
ticket and add comments to it.
Ensure that the comment
section is easy to use and
clearly displays all existing
comments in a threaded or
nested format.

The system shall allow
technicians and admins the
ability to change/add certain
details on a ticket.

Single Ticket Info Screen,
Assignee + Other Assignees
Combo box, Status, Tags
Combo box

Test the ability to change/add
certain details on a ticket by
verifying that technicians and
admins can access the Edit
Ticket Details component and
modify specific fields such as
the ticket status, Tags, or
assigned technician(s).
Ensure that the component is

37

easy to use and clearly
displays all editable fields in
a logical and organized
manner.

The system shall provide all
users with a knowledge base
where they can search for
helpful documents.

Knowledge Base Screen +
KB Articles Document
Library

Test the ability to search for
documents in the Knowledge
Base by verifying that the
Search Bar is functioning
properly and returns relevant
search results when users
enter search terms. Ensure
that the Search Bar is easy to
use and clearly displays
suggested search terms or
results as the user types.

The system shall provide
technicians and admins with
manager tools.

Manager Tools Screen, All
Tickets, Tag Manager, Alert
Manager, Ticket Metrics,
Assign Role

Test the functionality of the
Manager Dashboard and
Manager Tools UI
Components by verifying that
technicians and admins can
access and use the tools as
intended.

The system shall provide
technicians and admins the
ability to view all tickets in
the database with search and
filtering capabilities.

All Tickets Screen, Search
Tickets Power Automate,
Filter Tickets Power
Automate

Test the functionality of the
Ticket List UI Component
and Search/Filter UI
Components by verifying that
technicians and admins can
access and view all tickets in
the database, as well as search
and filter tickets based on
specific criteria.

The system shall allow
technicians and admins to
add/remove tags from the
database.

Tag Manager Screen, Add
Tag/Delete Tag Button

Test the functionality of the
Tags UI Component and
Database API by verifying
that technicians and admins
can add or remove tags from
the database. This includes
testing the ability to create
new tags and delete existing
tags.

The system shall allow
technicians and admins to

Assign Role Screen Test the functionality of the
User Role UI Component and

38

change user roles. Database API by verifying
that technicians and admins
can change the roles of users
in the system. This includes
testing the ability to assign or
remove roles to/from users
and view the roles assigned to
each user.

The system shall allow
technicians and admins to
create and manage alerts.

Alert Manager Screen, Create
Alert Screen, Edit Alert
Screen

Test the functionality of the
Alerts UI Component and
Database API by verifying
that technicians and admins
can create and manage alerts
in the system. This includes
testing the ability to create
new alerts, edit existing
alerts, and view alerts in a
user-friendly and intuitive
interface.

The system shall send email
notifications to users when a
ticket is created, an alert is
created, ticket has been
updated, or ticket has been
assigned to a technician.

Send Email Power Automate,
Create Ticket Button, Add
Comment Button, Save
Button, Create Alert Button

Test the Email Service and
Notification API to ensure
that email notifications are
properly sent to users when a
ticket is created, an alert is
created, a ticket has been
updated, or a ticket has been
assigned to a technician. The
Ticket Module, and Alert
Module should be designed to
generate the appropriate
notifications based on user
preferences and system rules.
The Email Service should be
able to deliver emails reliably
and securely,

39

11. Glossary
● Application Programming Interface API: Method for when two or more programs

communicate with each other
● ChatBot: Program where a A.I can make automated responses to the user
● Hypertext Transfer Protocol Secure (HTTPS): A type of request made by a web browser

in order to load a webpage. HTTPS is a secure version of Hypertext Transfer Protocol
(HTTP) and is commonly used when transferring private data like logging into an email
or bank account.

● Microsoft Azure: Cloud computing platform that interacts with other microsoft
products/software like PowerApps.

● MySQL: An open source relational database management system (RDMS) used to store
and access data.

● OffBoarding: Process of removing an employee/member from a system. Also involves
revoking/freezing employees access to system database

● Onboarding: Process of integrating a new employee/member into a system
● Open source: Software where the creator allows other users direct access to the source

code so the user can alter and distribute the software for their own purpose
● Power Apps: Program used to develop ticketing system app for mobile and desktop

platforms
● SBPD: Santa Barbara Public Defenders
● Secure Mail Transfer Protocol (SMTP):A type of request that is made when on an email

from one account to another

● Ticketing system: Software program used by a support team for the purpose of keeping
track of problems/requests submitted by users/customers

12. References
https://csns.cysun.org/department/cs/project/view?id=7913647

SBPD Website: https://www.countyofsb.org/187/Public-Defender

Software Requirements Document: Software Requirements Document

ZenDesk: https://www.zendesk.com

ServiceNow: https://www.servicenow.com/

Shane Young Youtube Channel: https://www.youtube.com/@ShanesCows

Reza Dorrani Youtube Channel: https://www.youtube.com/@RezaDorrani

40

https://docs.google.com/document/d/1TjQQRAfu2kgExcmaEHB6C4dc67sObsFHBa863Quv7Cw/edit?usp=sharing
https://csns.cysun.org/department/cs/project/view?id=7913647
https://www.countyofsb.org/187/Public-Defender
https://www.zendesk.com
https://www.servicenow.com/
https://www.youtube.com/@ShanesCows
https://www.youtube.com/@RezaDorrani

