
1

Software Design
Document

for

Trek VR Room
Version 2.0

Prepared by Lucca Andrade Guedes Galvao Coutinho, Fabio Carrasco,
Enrique Guardado, Ruben Heredia, Ari Jasko, Bryan Lopez, Ly Jacky

Nhiayi, Ayush Singh, Rizwan Vazifdar, Justin Vuong

Sponsored by NASA JPL

May 11, 2023

2

Table of Contents..<pg 2>
Revision History...<pg 3>

1. Introduction..<pg 4>
2. Design Considerations... <pg 5>
3. Architectural Strategies..<pg 7>
4. System Architecture...<pg 9>
5. Policies and Tactics..<pg 11>
6. Detailed System Design...<pg 13>
7. Detailed Lower level Component Design..<pg 17>

7.1 TrekRasterSubsetWebService.cs…………..<pg 17>
7.2 TrekToolsWebService.cs…………………..<pg 18>
7.3 GlobeTerrainCoordinateLinesController.cs..<pg 19>
7.4 GlobeTerrainModel.cs……………………..<pg 19>
7.5 TextureUtils.cs……………………………..<pg 20>
7.6 XRController.cs….………………………...<pg 20>
7.7 PrimaryXRController.cs…………………...<pg 21>
7.8 TrekSearchWebService.cs………………..<pg 23>

8. Database Design...<pg 25>
9. User Interface...<pg 25>

9.1 Overview of User Interface..<pg 25>
9.2 Screen Frameworks or Images...<pg 25>
9.3 User Interface Flow Model...<pg 26-27>

10. Requirements Validation and Verification..<pg 28-29>
11. Glossary..<pg 30>
12. References..<pg 31>

3

Revision History

Name Date Reason For Changes Version

Everyone 11/20/2022 Inserted most information excluding
section 6,7, and 9

1.0

Jacky 12/1/2022 Inserted all subsections of 7 1.1

Everyone 12/5/2022 Finalizing all of section 7 and 6 1.2

Everyone 12/9/2022 Polishing grammar/small errors 1.3

Everyone 5/10/2023 Polishing and adding more
subsections to 6 and 7

2.0

<Add rows as necessary when the document is revised. This document should be consistently
updated and maintained throughout your project. If ANY requirements are changed, added,
removed, etc., immediately revise your document.>

4

1. Introduction
1.1 Purpose

1.1.2. This document will focus on the software design used to build the collaborative features
for TrekVR. The purpose of the collaborative features is to allow users to share in real-time
exploration of planetary bodies using actual data from the Jet Propulsion Laboratory (JPL).

1.2 Document Conventions

1.2.1. The title for each section is Times New Roman, with a font size of 20.
1.2.2. The subtitle for each section is Times New Roman, bold, with a font size of 14.
1.2.3. The body and bullet points for each section are in Times New Roman, with a font size of
12.

1.3 Intended Audience and Reading Suggestions

1.3.1. This document is for project managers, developers, users, document writers, and people
with some background in computer science. This includes staff, faculty, advisors, and NASA JPL
liaisons. The recommended sequence for reading starts with the introduction and then moves to a
topic the user is interested in.

1.4 System Overview

1.4.1. The JPL Trek VR Room is an open-standard Virtual Reality (VR) application that has been
thoughtfully designed for use with VR headsets. The application seamlessly retrieves scientific
data from the Jet Propulsion Laboratory (JPL) TrekVR database, which serves as a repository for
terrain data of various celestial bodies. Through the astute use of VR technology, the software
provides an immersive and distinctive ground-level view of these celestial wonders. This is made
possible by creating a VR user interface that empowers users to select a point of interest (POI)
on the celestial body. Following the selection of the POI, users are able to access pertinent data
related to it and view it in a manner that highlights paths through the celestial body. The VR
headset enables users to manipulate their viewing direction and utilize virtual hands to navigate
through the user interface.

5

2. Design Considerations
This section describes many of the issues which need to be addressed or resolved before
attempting to devise a complete design solution.

2.1 Assumptions and Dependencies

2.1.1. Hardware: Vive, Meta Quest 2, Windows Computer

2.1.1.1. The consumer of the software is expected to have consistent access to a stable
internet

2.1.1.2. A consumer may need to install Steam to run the application

2.2 General Constraints

2.2.1. Hardware Limitation: The application needs to render somewhat high-quality graphics.
Therefore, some users will need a strong GPU in order to run it.

2.2.1.1. VR (Wired)
■ The processor must be Intel i5-4590 / AMD Ryzen 5 1500X or

greater
■ The operating system must be Windows 10 or above

○ If the VR device is wireless
■ Must have enough batteries
■ Components of the VR device must be functional

2.2.1.2. Development is limited to Unity and C#
2.2.1.3. Network communication: Must have a stable enough connection to the internet to

access the NASA API calls.

2.3 Goals and Guidelines

2.3.1. Our team is presently executing the Agile methodology, entailing biweekly scrum
meetings within the team and weekly meetings with our liaisons. Our main aim is to mitigate the
limitations imposed by the waterfall approach when incorporating new features. To achieve this,
we prioritize the development of functional features and then progressively expand the project.

6

2.4 Development Methods

2.4.1. Our team is utilizing the Agile process and conducting semi-weekly scrum
meetings internally, while liaisons are joining us on a weekly basis. Our primary objective is to
facilitate the addition of new features without being constrained by the limitations of the
waterfall method. As the potential for new features arises, the Agile approach allows us to
maintain flexibility in such situations.

7

3. Architectural Strategies
3.1. Software Used

3.1.1. Programming languages used:

■ C#

■ Unity C#

■ HTML/CSS

■ Java

■ JavaScript - HTTP request handler/ servlet operations

3.1.2. Development Environments:

■ Unity 21.3.8f – Stable long-term support version

■ Visual Studio

■ Visual Studio Code

3.1.3. External Services and Libraries:

■ SteamVR Unity

■ OpenXR

3.1.4. Reuse of Existing Software:

■ JPL VR Trek - Alvin Quach

3.2. Hardware and Software Interface Paradigms

3.2.1. VR Headsets and controllers

■ HTC Vive Headset + Controllers

■ Meta Quest 2 Headset + controllers

3.3. Database Usage:

3.3.1. Data Request Frequency

■ Data is requested and pulled every session for every host

■ Data will be stored within the software as preloaded data.

8

3.3.2. Requested Data Types:

■ Map data

● Web Map Tile Service (WMTS)

● Coordinate Data

● Text Data

■ HTTP requests

■ Mesh Data

■ Locational Information Data Sets

■ Text Data

3.4. Future plans for extending or enhancing the software

3.4.1. Integrate OpenXR and grant OpenXR-enabled devices accessibility to JPL
VR Trek

3.4.2. Save Session State

■ Keep track of changes made by users on the current session

3.4.3. Implement session collaboration

■ Text chat enabled for multiple users

■ Participants list

■ Annotation and custom drawing data sharing between users in the
same session

3.4.4. Export current session data into an external file for continuous use

3.5. Memory Management Policies

3.5.1. Data will be saved throughout the session

3.5.2. Data is maintained locally only after the session

3.5.3. User information and data history will not be tracked online

9

4. System Architecture
The overall system is separated into three different entities:

4.1. User

4.1.1. The user will be able to pick between certain planets and request
information on

4.2. JPL VR System

4.2.1. The software itself will execute the wanted functions

■ Display demanded planet
■ Display demanded planet data

4.3. NASA Database

4.3.1. This is where all the information is held, where the previous entity is able to
grab any data required

10

Level 1 DFD

The software has two primary functions, namely, to exhibit the planet that the user has requested
in virtual reality and to furnish data pertaining to the same. The user is presented with multiple
options to choose from with regard to which planet he/she desires to view in VR or access the
corresponding data. The software proceeds to execute the function that the user has requested
and, subsequently, initiates an API call to the server of JPL to obtain accurate information.

11

5. Policies and Tactics

5.1 Choice of which specific products used
5.1.1. IDE: Unity Hub and Visual Studio Code

5.2 Plans for ensuring requirements traceability
5.2.1. To ensure the maintenance of up-to-date requirements traceability, our approach

entails documenting all meetings and decisions made. This will predominantly involve
generating meeting minutes that succinctly capture the key events and outcomes from such
meetings. Furthermore, we have established a plan to keep our liaisons and advisor apprised of
the project's progress.

5.3 Plans for Testing the Software
5.3.1. The software in the project shall undergo preliminary testing using an HTC Vive

device in conjunction with the Unity Game Engine. It is important to note that the JPL VR Trek
project is exclusively compatible with the HTC Vive VR headset. Following the integration of
OpenXR, the software shall be capable of functioning on alternative devices such as the Meta
Quest 2. Subsequently, we shall conduct testing using the Meta Quest 2 device in tandem with
the Unity Game Engine. Upon completion of the project, a beta test phase shall commence,
utilizing the Meta Quest 2 and SteamVR to evaluate the software product.

5.4 Coding Guidelines and Conventions
To ensure adherence to coding best practices, we will implement the following coding
conventions. Firstly, we will utilize comments to enhance the readability of the code by
providing transparency on the functionality of distinct sections. Secondly, we will employ the
Camel Case standard in line with C# specifications to promote uniformity and clarity in code
appearance. Lastly, we will use designated folders when coding with OpenXR and Unity to
facilitate the proper sorting of project assets, such as scenes, materials, and 3D models.

5.5. The protocol of one or more subsystems, modules, or subroutines
The implementation phase of the project will involve the adoption of an agile

programming approach, characterized by a series of iterative and incremental coding "sprints".
These sprints will encompass essential phases, including design, development, testing,
deployment, and review. The iterative nature of these sprints will facilitate the completion of the
project in a timely and efficient manner.

5.6. The choice of a particular algorithm or programming practice(or design
pattern) to implement portions of the system's functionality

12

Utilizing an agile programming methodology, we aim to establish deadlines for each significant
milestone in the project. Moreover, the team will have the opportunity to engage with the liaisons
subsequent to every coding sprint to evaluate the quality of the code output.

5.7. Plans for maintaining the software

A significant impediment faced by numerous Unity projects pertains to the
comprehensive organization of the project. Our strategy entails preserving the integrity of the
software by implementing precisely labeled folders for distinct assets. Establishing a uniform file
structure will enhance accessibility and facilitate the maintenance of the code and Unity assets.
Additionally, adherence to these practices will assist forthcoming project members in locating
code, assets, and pertinent information.

5.8. Interfaces for end-users, software, hardware, and communications
● Unity
● Visual Studio Code
● GitHub
● SteamVR
● PlasticSCM

5.8.1 Hierarchical organization of the source code into its physical
components (files and directories).

The project is organized into distinct application functions, namely globe display, JPL
server communication through API calls, and Unity environment behavior. The C# files are
divided into three categories: Models, Services, and Utils. The Models section contains the data
necessary for creating the Mars GameObject. The Services section comprises several classes
designed to make API calls to JPL, while the Utils section contains classes that assist in
communication with the JPL API calls. The VR controllers are located in the Unity section of the
project. The Unity component is responsible for generating lights and facilitating user interaction
with Mars.

5.9. How to build and/or generate the system's deliverables (how to compile,
link, load, etc.)

The system's deliverables shall undergo compilation, linkage, and loading into a build
utilizing the Unity Engine, which is equipped with a C# compiler.

13

6. Detailed System Design

6.1 Service(Module)
6.1.1 Responsibilities

The primary purpose of the Services module is to establish a connection with the Trek
web services and retrieve its products, while simultaneously providing the capability to
load the acquired data into a cache. A cache is useful because it stores frequently
accessed data, allowing for faster retrieval of that data when it is requested again. This
improves system performance by reducing data access times and minimizing the load on
the system.

6.1.2 Constraints

This software component facilitates the interaction with the Trek web services through
JPL's API. It is crucial to note that this component's proper functioning depends on a
successful API call to the Trek web services.

6.1.3 Composition

The Service folder comprises various subcomponents, namely: The RasterSubset folder,
utilized for the retrieval of products from Trek web services; the Search feature, which
searches through the Trek Services index to locate the technical information required by
the TrekVR application; and the Tools folder, intended for retrieving products from Solar
Trek.

6.1.4 Uses/Interactions

Upon project instantiation, this component and its subcomponents will directly interface
with the Trek web services.

6.1.5 Resources

The proper functioning of this component will require the provision of the endpoint of the
API in use, as well as a storage system capable of accommodating the products being
accessed.

14

6.1.6 Interface/Exports

6.1.6.1. TrekRasterSubsetWebService

● Retrieves numerous different data types from the Trek Web Services by JPL

6.1.6.2. TrekSearchWebService

● Searches through the Trek Services index to locate technical information the
TrekVR application needs

6.1.6.3. TrekToolsWebService

● Retrieves information from the Solar Trek from JPL

6.1.6.6. ControlPanel

● Displays UI for an Angular application

6.2 XRInteraction
6.2.1 Responsibilities

The XRInteraction directory facilitates the development of virtual reality (VR)
encounters that enable users to engage with virtual objects in a seamless and instinctive
manner without being burdened by the intricacies of controller mechanics at the lower
levels of abstraction.

6.2.2 Constraints

This particular component is designed for employment within a virtual reality
environment featuring controllers equipped with trigger buttons, touch pads, and grip
buttons. Its core functionalities and attributes are tailored to these types of input and may
not be well-suited for integration with VR environments utilizing alternate input methods
or controllers.

6.2.3 Composition

The XRInteraction system comprises several subcomponents, including the Terrain
folder, which facilitates various terrain interactions, including bounding box selection,
distance measurement, and navigation to specific locations on the globe. Additionally, the
UI Elements folder provides a mechanism for displaying text labels in a virtual reality
environment, while the User Interface folder is designed for the display and interaction
with web browsers within a virtual reality setup.

15

6.2.4 Uses/Interactions

This component defines objects that can be interacted with using VR controllers. It also
provides support for grabbing and rotating the globe.

6.2.5 Resources

The module in question requires minimal resources, albeit contingent upon possessing
appropriate VR hardware, comprising a VR headset and VR controllers, upon facilitating
interactive engagement with objects in a virtual reality milieu.

6.2.6 Interface/Exports

6.2.6.1. XRInteractableObject

● Provides a common interface and default behavior for responding to
different types of controller input.

6.2.6.2. XRSubscribableCollider

● Enables the creation of clickable, interactable objects in a VR environment
that a controller's buttons can trigger.

6.2.6.3. XRInteractableGlobeTerrain

● Allows developers to add features such as grabbing and rotating the globe,
navigating to specific locations, and displaying coordinate lines and labels.

6.2.6.4. XRInteractableTerrain

● Provides access to a number of common features, including bounding box
selection, height profile measurement, and sun angle computation.

6.2.6.5. XRBrowser

● Intended to be used to display and interact with an embedded web browser
in a VR environment.

6.2.6.6 XRController

● Enable interactive functionality for XR controllers, enabling the utilization
of typical VR triggers.

6.2.6.7 XRInteractableTerrainActivity

● The XRInteractableTerrain defines constants that represent various terrain
activities.

16

6.3 TerrainModel
6.3.1 Responsibilities

The TerrainModel directory comprises all essential models for generating the Mars
Model. It encompasses a wide range of planet attributes, including but not limited to
radius, shadows, and terrain data. The TerrainModel folder serves as the fundamental
cornerstone of the application, as it leverages the aforementioned model to execute the
JPL API call.

6.3.2 Constraints

Upon the instantiation of this component during the application's launch, all pertinent
data of the Mars model will be generated, thereby precluding any further modifications to
said data. This preemption of additional data alteration results in seamless execution of
the application, devoid of any loading concerns.

6.3.3 Composition

The TerrainModel is comprised of several subcomponents, each serving a distinct
function in the creation of the Mars Globe for VR devices. Specifically, the Globe Folder
generates the game object, the Layer folder incorporates various layers and materials onto
the globe, and the Overlay component generates the longitude and latitude values of the
globe. Through seamless coordination, these components collaborate to generate the final
output.

6.3.4 Uses/Interactions

This particular component operates in conjunction with the Service Component and the
UI Component, thereby facilitating user access to a range of information, including but
not limited to the distance between two given points, variations in height levels, and other
relevant data. Additionally, the Service Component will draw on planetary information to
execute API calls to JPL.

6.3.5 Resources

Minimal resources are required to enable the functionality of this module. During project
initialization, mesh data is generated, and the JPL data is already stored as hard-coded
files.

17

6.3.6 Interface/Exports

6.3.6.1. TerrainModelManager

● Creates game objects for the globe and the terrain of the globe

6.3.6.2. GlobeTerrainModel

● Processes data from files inside the project and calculates values from other
classes to make the data necessary to create the game object.

6.3.6.3. TerrainConstants

● Generates the necessary constants to make Mars object

6.3.6.4. TerrainLayerController

● Creates the different layers on the Mars Globe object

6.4 Tiff
6.4.1 Responsibilities

The Tiff folder facilitates the processing of tiff images sourced from JPL by developers.
Specifically, it employs a conversion mechanism to translate the Tiff images provided by
JPL into Unity-compatible objects that can be seamlessly integrated into the Unity
engine.

6.4.2 Constraints

If the TIFF image is too large, it may take a significant amount of time to load the
application. Tiff images from JPL vary from a couple of megabytes to gigabytes.

6.4.3 Composition

The subcomponents of the Tiff include TiffEncoding, TiffImage, and TiffSampleFormat.
All of these classes handle the tiff images from the JPL API calls.

6.4.4 Uses/Interactions

This component defines the TIFF images so that it can be used to generate the Mars
Globe.

6.4.5 Resources

The resources needed to run this module are minimal, it requires a library called libTiff,
which is a library that handles the tiff images.

6.4.6 Interface/Exports

N/A

18

6.5 ZFBrowser
6.2.1 Responsibilities
The ZFBrowser directory comprises a multitude of auxiliary functions that are intended
for utilization within the control panel. This directory is of paramount importance, as it
enables the transformation of the Angular UI into a game object, thus enhancing the
functionality of the control panel.

6.2.2 Constraints
The ZFBrowser version must be compatible with the Unity version.

6.2.3 Composition
The ZFBrowser comprises several subcomponents, namely ZFBrowserConfig,
ZFBrowserConstants, and FunctionSets. The FunctionSets enable seamless
communication between the Unity and Angular applications, and within the FunctionSets
module, the ZFBrowser also interfaces with the TerrainModelManager

6.2.4 Uses/Interactions
This component interacts with the control panel, the terrainModelManager, and the
Angular application

6.2.5 Resources
To run this, we need the angular application that was built by Alvin Quach (The person
who originally made JPL Vr Trek)

6.2.6 Interface/Exports
N/A

7. Detailed Lower level Component Design

7.1 TrekRasterSubsetWebService.cs

7.1.1 Classification
VR room component that retrieves products from the Trek web services

7.1.2 Processing Narrative (PSPEC)
The purpose of this class is to retrieve required and wanted products from the Trek web
services.

7.1.3 Interface Description
Input: Base, subset, and search URLs
Output: N/A

7.1.4 Processing Detail
The class gets called every time the project is instantiated

19

7.1.4.1 Design Class Hierarchy
Parent class: IRasterSubsetWebService
Child class: TrekRasterSubsetWebService.

7.1.4.2 Restrictions/Limitations
Restrictions and limitations are based on the API call, whether it is available to access or
not.

7.1.4.3 Performance Issues
N/A

7.1.4.4 Design Constraints
This service will only work given the proper JSON payloads.

7.1.4.5 Processing Detail For Each Operation
GetRasters: Retrieve products from the Trek web services in the form of a JSON file
GetRaster: Iterates over the list of objects and passes each one as a parameter to the
callback variable. This allows the function to determine the behavior and action executed
on each object without needing to know how GetRasters works.
SubsetProduct: Retrieves products from Trek web services and saves them to a file. If
the file is already present; it will then be loaded instead.
SubsetProduct: Retrieves products from Trek web service and saves them to a file. If the
file is already present, it will be loaded instead unless file redownloads are forced.
VerifyProductExists: Determines whether a product UUID of the
TerrainProductMetaData class matches with any of the rasters
DeserializeResults: Instantiate and convert the given string to a ‘SearchResult’ object

7.2 TrekToolsWebService.cs

7.2.1 Classification
The purpose of this class is to retrieve necessary information from Solar Trek

7.2.2 Processing Narrative (PSPEC)
Retrieve and return the distance between points of interest(POI) and height of POIs from
Solar Trek.

7.2.3 Interface Description
Input: Selected POI
Output: Distance between POIs, the height of POIs

7.2.4 Processing Detail
The class gets called when the tool is used.

20

7.2.4.1 Design Class Hierarchy
Parent class: IToolsWebService

7.2.4.2 Restrictions/Limitations
Restrictions depend on Solar Trek Web Service

7.2.4.3 Performance Issues
N/A

7.2.4.4 Design Constraints
N/A

7.2.4.5 Processing Detail For Each Operation
GetDistance: Returns distance between POIs by invoking a string representing a JSON
file.
GetHeight: Returns height of POIs by invoking a string representing a JSON file.

7.3 GlobeTerrainCoordinateLinesController.cs

7.3.1 Classification
The controller is responsible for managing the coordinate elements on the globe.

7.3.2 Processing Narrative (PSPEC)
coordinate lines and labels are rendered on the selected globe. Coordinate lines and labels
may not appear if the eye position is not within a certain distance of the globe.

7.3.3 Interface Description
Input: coordinate position, label position, material, and viewer eye position
Output: coordinate lines and labels on globe object

7.3.4 Processing Detail
Gets called anytime a globe object is rendered

7.3.4.1 Design Class Hierarchy
Parent Class: MonoBehaviour

7.3.4.2 Restrictions/Limitations
N/A

7.3.4.3 Performance Issues
N/A

7.3.4.4 Design Constraints

21

Coordinate information not viewable while globe texture is being rendered or if eye
position is not near the globe

7.3.4.5 Processing Detail For Each Operation
UpdateVisibility: controls whether the coordinate lines are visible or not
InitMaterials: creates the materials used for coordinate lines, coordinate labels.
RemoveCoordinateLines: removes the coordinate lines from the globe object.
UpdateCoordinateLinesOpacity: changes the coordinate lines opacity based on the
viewing distance

7.4 GlobeTerrainModel.cs

7.4.1 Classification
Globe component that generates the terrain data based on mesh data and data given by
JPL. Generates a level of details of Mars based on a queue adding the necessary data for
each terrain.

7.4.2 Processing Narrative (PSPEC)
The purpose of this class is to generate the proper terrain for Mars.

7.4.3 Interface Description
Inputs: Meshdata
Outputs: None, updates the globe GameObject or data for the globe GameObject.

7.4.4 Processing Detail
The class gets called everytime the project is instantiated

7.4.4.1 Design Class Hierarchy
Sealed class - cannot be inherited

7.4.4.2 Restrictions/Limitations
Cannot have children, must have valid inputs to access data such as having a valid
productId,width, and height for function GenerateProductMetadata.

7.4.4.3 Performance Issues
N/A

7.4.4.4 Design Constraints
Must contain valid data from JPL to generate proper representation of Mars

7.4.4.5 Processing Detail For Each Operation
GenerateMesh: Generates Terrain model data from JPL files about Mars
PostProcessMeshData: Adds mesh data to the components of the GameObject given
meshdata
CanRescaleTerrainHeight: returns true or false if we can rescale terrain height
RescaleTerrainHeight: rescales the height given a scale input
GenerateProductMetadata: Generates all info currently into metadata in the form of a

22

TerrainProductMetadata object.

7.5 TextureUtils.cs

7.5.1 Classification
Texture component that generates accurate texture sizes that in return, allow the
application to render and appropriately display.

7.5.2 Processing Narrative (PSPEC)
The purpose of this class is to compute the expected texture sizes in bytes. Other
functions are to compute mipmap dimensions, compute mipmap size, and to generate
mipmaps.

7.5.3 Interface Description
Inputs: Width, height, format, mipmaps
Outputs: Textured width and height in pixels. Mipmaps dimensions.

7.5.4 Processing Detail
This class gets called in the TextureUtilsTest.cs

7.5.4.1 Design Class Hierarchy
This is a public class, and can be accessed through the whole project.

7.5.4.2 Restrictions/Limitations
Input data such as width and height must be of power 2. Textures must be in an
uncompressed fashion.

7.5.4.3 Performance Issues
Performance issues could result in incorrect width and height values or issues in
rendering due to textures and mipmaps.

7.5.4.4 Design Constraints
The width and height must be of power 2 and textures must be uncompressed.

7.5.4.5 Processing Detail For Each Operation
ComputeTextureSize: Receives width and height. Then return the size calculated by
making sure the width and height are within the numerical range of 1.
ComputeMipmapDimensions: Checks to see if the dimensions are of power two. If they
are, check the width and height are of size 0 then the mipWidth and mipHeight is 0. Else
return the mipWidth and mipHeight by using clamp method.
ComputeMipmapSize: Create TextureCompressionFormat object. Throw an exception
if there aren’t uncompressed textures. Then call the ComputeMipmapDimensions to
compute the mipWidth and mipHeight. Returns computed mipmap size by multiplying
mipWidth with mipHeight and bits per pixel.
GenerateMipmaps: Receives an RGBImage and gets the width and height. Create a new
method of GenerateMipmaps with the size, bytes, image size, and level.

23

GenerateMipmaps: Receives an RGBImage. Iterates mipWidth and mipHeight and sets
the pixels for mipImage. Return from the method when mipWidth and mipHeight are 1,
else rerun this method and reduce those values.

7.6 XRController.cs

7.6.1 Classification
This file registers all activity/events that occur with the VR Headset controllers.

7.6.2 Processing Narrative (PSPEC)
The purpose of this class is to accurately map out “Event Actions” when the user
interacts with the controller device. This class takes into account all buttons pressed and
sensors that are triggered while using the controller device.

7.6.3 Interface Description
Inputs: VR Headset Controllers
Output: Virtual Reality Responses: Movement, Laser Pointer, Menu Selection, Controller
Vibration

7.6.4 Processing Detail
This class is accessed whenever the user interacts with the controller.
Sleep State⇒ Awake State⇒ Sleep State

7.6.4.1 Design Class Hierarchy
This is a public class, and can be accessed through the whole project.

7.6.4.2 Restrictions/Limitations
In order for this class to be accessed, the controllers must have sufficient batteries to
operate.

7.6.4.3 Performance Issues
If the controller batteries are low, then the controllers may become unresponsive.

7.6.4.4 Design Constraints
User activity is limited to the battery health on both controllers.

7.6.4.5 Processing Detail For Each Operation
OnTriggerClicked/OnTriggerUnclicked:
Returns a response when the user clicks down on the controller trigger.
OnPadClicked/OnPadUnclicked/OnPadTouched/OnPadUntouched:
Returns a response when the user interacts with the touchpad on the controller.
OnGripped/OnUngripped:

24

Decides whether the user is actively using the controller. If the controller is ungripped for
a long time, the device will sleep.
OnMenuButtonPressed:
Returns a response by opening a universal menu overlay.

7.7 PrimaryXRController.cs

7.7.1 Classification
This file handles the activity on the controller that the user primarily operates.

7.7.2 Processing Narrative (PSPEC)
The purpose of the class is to identify the active/idle states of the controller and provide
accurate responses based on those states.

7.7.3 Interface Description
Inputs: VR Headset Controllers
Output: Virtual Reality Responses: Movement, Laser Pointer, Menu Selection, Controller
Vibration

7.7.4 Processing Detail
This class is accessed whenever the user interacts with the controller.
Sleep State⇒ Awake State⇒ Sleep State

7.7.4.1 Design Class Hierarchy
This is a public abstract class that can be accessed through the whole project.

7.7.4.2 Restrictions/Limitations
In order for this class to be accessed, the controllers must have sufficient battery to
operate.

7.7.4.3 Performance Issues
If the controller batteries are low, then the controllers may become unresponsive.

7.7.4.4 Design Constraints
User activity is limited to the battery health on both controllers.

7.7.4.5 Processing Detail For Each Operation
GrippedHandler/UngrippedHandler:
Send information regarding the active/idle state of the controller.
MenuButtonPressedHandler:
Sends a response when the menu button is clicked to open the menu user interface on the
headset.
Update:
Whenever the user interacts with a key in the application, this function will update the
frames viewed on the VR Headset in response to the button/key pressed.

25

7.8 TrekSearchWebService.cs

7.8.1 Classification
This class serves as a call to the TrekSevices API.

7.8.2 Processing Narrative (PSPEC)
The purpose of this class is to search through the Trek Services index to locate technical
information the TrekVR application needs.

7.8.3 Interface Description
Inputs: Search index
Outputs: Search results

7.8.4 Processing Detail
This class is accessed whenever the TrekVR application needs to call the TrekServices
API for information.

7.8.4.1 Design Class Hierarchy
Parent Class: ISearchWebService

7.8.4.2 Restrictions/Limitations
The search is limited to 400 items.

7.8.4.3 Performance Issues
N/A

7.8.4.4 Design Constraints
N/A

7.8.4.5 Processing Detail For Each Operation
GetDatasets: Gets datasets from the search index and stores them in the cache.
GetFacetInfo: Gets facet counts from the search index and stores them in the cache.
GetBookmarks: Gets bookmarks from the search index and stores them in the cache.
GetNomenclatures: Gets nomenclatures(search result details) from the search index and
stores them in the cache.
GetProducts: Returns product label from the web index.
Search: Gets Http response parameters for the keys and values and returns a Search
Result
SearchResults: Takes a JSON response file and returns a Search Result

7.9 TerrainModelManager.cs

7.4.1 Classification
The manager creates a globe using JPL’s TIFF DEM and the texture of Mars. There exists
only one instance of this class in the life cycle of the project.

26

7.4.2 Processing Narrative (PSPEC)
The purpose of this class is to generate the globe of Mars.

7.4.3 Interface Description
Inputs: Meshdata
Outputs: None, updates the globe GameObject or data for the globe GameObject.

7.4.4 Processing Detail
The class gets called everytime the project is instantiated

7.4.4.1 Design Class Hierarchy
Sealed class - cannot be inherited

7.4.4.2 Restrictions/Limitations
Cannot have children, must have valid inputs to access data such as having a valid
productId,width, and height for function GenerateProductMetadata.

7.4.4.3 Performance Issues
N/A

7.4.4.4 Design Constraints
Must contain valid data from JPL to generate proper representation of Mars

7.4.4.5 Processing Detail For Each Operation
InitializeMaterial: Generates Texture of a Globe given a shader.
InitializeGlobeTerrainModel: Utilizes DEM and triangulation to create the mars globe.

8. Database Design

This application will use the JPL TrekVR Database and API.

27

9. User Interface
9.1 Overview of User Interface
Upon initiation of the software, the user will be seamlessly immersed into a virtual reality
environment replete with an interactive table located at its focal point, thereby affording facile
access to the Moon/Mars Trek Program. By manipulating the interactive table, the user will be
able to navigate and inspect a detailed 3-dimensional topographical map. From this map, the user
will be able to select a desired destination, whereupon they will be promptly transported from the
virtual environment to the corresponding terrain.

9.2 Screen Frameworks or Images
Figure 9.2.1.

Figure 9.2.2.

28

Figure 9.2.3.

Figure 9.2.4.

29

Figure 9.2.5.

Figure 9.2.6.

9.3 User Interface Flow Model
Search Tree for all scenarios:

● Display
○ Return to Globe
○ Display Settings

■ Texture
● On/off turns off or on texture

■ Coordinate
● On/off to turn the grid off or on

■ Location names
■ Terrain exaggeration

● Scroll bar gives more exaggeration to texture
■ Can turn off lights

30

● Activate flashlight
● Menu

○ Search
■ Bookmarks

● Can see information about the product that was bookmarked
● Send to controller

○ Products can be seen on the controller
○ Contains information about the product
○ Go back button

■ Can see a list of products
○ View on globe

■ Nomenclatures
■ Products

● Displays list of products
● Select a product

○ See information about product
○ Can choose to see it on globe

● Sort search results
● Send to controller

○ Products can be seen on controller
○ Contains information about product
○ Go back button

■ Can see a list of products
○ View on globe

○ Tools
● Area selection

○ Display Settings
■ Textures

● Adjust resolution and/or brightness of selected
object

■ Terrain Exaggeration
● Adjust elevation of selected terrain

● Distance
○ Measure distance

■ Records distance of drawn area
● Elevation Profile

○ Records elevation of selected area
○ Plots coordinates of the elevation on a graph

○ Layer manager
■ Add new layer

31

● Layer manager: select an item from the list and add it to layers.
○ Add to layer

■ Adjust the color of selected object
■ Search layers
■ View in controller

○ Options

32

10. Requirements for Validation and Verification

Requirements Testing method

Collaboration To be tested

Chat To be tested

Annotation To be tested

Save state To be tested

Waypoint To be tested

33

11. Glossary
An ordered list of defined terms and concepts used throughout the document. Provide definitions
for any relevant terms, acronyms, and abbreviations that are necessary to understand the SDD
document. This information may be listed here or in a completely separate document. If the
information is not directly listed in this section provide a note that specifies where the
information can be found.

Acronym Long Version

[1] SRS Software Requirement Specifications

[2] SDD Software Design Document

[3] JPL Jet Propulsion Laboratory

[4] UI User Interface

[5] POI Point of Interest

34

12. References
Brad Appleton <brad@bradapp.net> http://www.bradapp.net

https://www.cs.purdue.edu/homes/cs307/ExampleDocs/DesignTemplate_Fall08.doc
TerrainModelManager

http://www.bradapp.net
https://www.cs.purdue.edu/homes/cs307/ExampleDocs/DesignTemplate_Fall08.doc

