
Senior Design Final Report

QTC Smart Dashboard & Business Rule Engine

TeamMembers:

Bryan Gonzalez

Alvent Chang

Ashley Manese

Karina Pascual Zepeda

Adrian Salgado Lopez

Jonathan Diaz

Razin Khan

James Eddins

Anthony Tsui

Pokuong Lao

Faculty Advisor:

Huiping Guo

Liaisons:

Francisco Guzman

Julian Gutierrez

Table of Contents

Contents
1. Introduction (Smart-Dashboard) :..4

1.1. Background:...4

1.2. Design Principles:..4

1.3. Design Benefits:..4

1.4. Achievements:...4

2. Related Technologies:... 5

2.1. Existing Solutions:...5

2.2. Reused Products:...5

3. System Architecture...6

3.1. Overview:..6

3.2. Data Flow:...7

3.2.1 Database:... 7

3.2.2 Back End:... 7

3.2.3 Front End:..7

3.3. Implementation:.. 7

3.3.1 Features:...7

4. Conclusions:..8

4.1. Results:...8

4.2. Future:..9

5. Introduction (Business Rule Engine):.. 10

5.1. Background:.. 10

5.2. Design Principles:... 10

5.3. Design Benefits:...10

5.4. Achievements:..10

6. Related Technologies:..11

6.1. Existing Solutions:..11

6.2. Reused Technologies:..11

7. System Architecture... 11

7.1. Overview:... 11

7.2. Data Flow:.. 12

7.2.1 UI:... 13

7.2.2 Rule Engine:... 13

7.2.3 Database of Rules:... 13

7.2.4 Rule Execution:...13

7.2.5 ActionHandler:.. 13

7.3. Implementation:..13

7.3.1 Features:..13

8. Conclusions:... 14

8.1 Results:...14

8.2 Future:.. 14

9. References:...15

1. Introduction (Smart-Dashboard) :

1.1. Background:

QTC is the nation’s leading provider of medical, disability, and occupational health
examination services. What once started as a small medical center grew into 70 medical
clients with real-time access to reporting, tracking, and case information. To further this
system, QTC has teamed up with California State University, Los Angeles to develop a smart
dashboard to help service desk staff communicate with users and developers easily.

Smart Dashboard is a web application that helps consolidate errors for users and admins
that have occurred in different systems and applications. This application will support
multiple tenants and authenticate users using Windows authentication. The functionality of
the dashboard will be determined based on what the user has access to view.

1.2. Design Principles:

The goal of the smart dashboard is to be the designated interface for QTC staff to view
errors that have occurred in different systems. Based on the user's access level it will
determine what is displayed. The data displayed on the dashboard will be errors obtained
from different lines of businesses and their integration points through a data table. The
application is made to be user-friendly and easy to read. This is achieved by drop-down
menus for each line of business with their integration points, pagination, filter, sort,
search functionalities, and error displays. The data of errors pulled from each line of
businesses’ databases were converted to easy-to-read information. Also, since the smart
dashboard is still currently under development, the application needs to be simple in
design so that future maintenance and expansions will not be too complicated.

1.3. Design Benefits:

The architecture used by the smart dashboard is great for future use because it allows the
application to add additional lines of business. The aim of the smart dashboard is to display
user and/or system errors from the different tenants to the correlating user. The data of
errors pulled from each line of businesses’ databases were converted and displayed for
users to have readable information.

1.4. Achievements:

During the 2022-2023 academic year, by using Microsoft Visual Studio 22 the team created
a functional web application for our sponsor QTC. This web application uses an N-tier

architecture, modular design, and supports multiple tenants. Additionally, the data
displayed on the screen is not only from a specific data source but it also pertains to a
specific tenant. For the design of the user interface. It uses the bootstrap theme from QTC
which not only adheres to their ui/ux standard, but it uses the latest in front-end
technology such as HTML, CSS, and Javascript. Our interfaces are coded in C# specifically
for .NET 6 and they enable the functionality of the site such as retrieving and displaying the
specific errors on the screen. Lastly, if a username and password are not passed as query
parameters, then the user will see an unauthorized message on the screen.

2. Related Technologies:

2.1. Existing Solutions:

We investigated other smart dashboard solutions that are popular on the market and that
are catered towards businesses. These include Table, Yellowfin, Oracle Analytics Cloud, and
Domo.

While all of these dashboards provide a feature to connect to a database to retrieve data
and display it, they are not fully customizable, the user access control is very limited, and
the credentials to databases would get stored under one centralized account corresponding
to an email address which poses a major security risk.

The dashboards listed above require the database information to be stored within their
system. If their system gets breached then the data is at risk of exposure. Having an
in-house dashboard without storing any database credentials remotely is ideal for security
reasons. Additionally, it will match the current look and feel of QTC's other web
applications. This is not possible with the dashboards we listed.

2.2. Reused Products:

This smart dashboard will be developed using ASP.NET MVC, C#, Entity Framework using
stored procedures, and SQL as the backend. QTC provided the architecture and framework
which was divided into multiple layers, each section pertaining to the
Model-View-Controller (MVC) pattern. The scripts, styling, and coding environment can be
reused respectively. Lastly, our reusable class library can be used for other projects.

3. System Architecture

3.1. Overview:

QTC provided the framework which is what we used for the project. Each line of business is
isolated, their business logic is housed in an assembly plugin, ending with the file extension
DLL. Upon initial run, the application will scan a certain folder, look for the assemblies, load
them, extract the business logic, and inject them into the interfaces of our website
component. Each tenant may pull data from a different data source, which we refer to as
integration points. If maintenance or changes are necessary for one of the assembly plugins,
it can be done so without affecting the other plugins.

The diagram below demonstrates the overview of our system architecture

3.2. Data Flow:

3.2.1 Database:

The data necessary to populate the dashboard UI is stored in a database.

3.2.2 Back End:

Manipulates business logic with reference to the saved data in a database, converting and
populating the views.

3.2.3 Front End:

The visual aspect of the website that interacts with the user after the data (derived from the
database) is manipulated via the back end.

3.3. Implementation:

We implemented features into our smart dashboard UI and a database to hold all data
displayed using said features.

3.3.1 Features:

The web page serves medical record files and the errors they contain that are implemented
through multiple interfaces.

● Side Navigation: The user can direct themselves through the web pages and
different tenant databases. The smart dashboard has a side navigation bar that has

built in links, which will then redirect the user to the correlating interface. The
Smart Dashboard sidebar has two integration points listed under “Applications” and
when the user clicks on either point or just the Dashboard link they will get
redirected to the correlating webpage.

● Help Button: Allows the users access to a guide on how every feature is used. The
Smart Dashboard has a button built into the side navigation with a question mark on
it to hint users and if they have any questions they can find the answer on how to
use the website's features there.

● Authentication: Allows only certain users access or permissions to view or use
certain web pages. The Smart Dashboard only allows certain users to view some
specific pages based on the user’s login information.

● Pagination: Allow the user to expand or contract the number of errors displayed on
the web page. The Smart Dashboard displays tables that list all the errors from the
data submitted. Below the table in the center the amount of errors are split into
multiple pages and allows the user to control what page they are viewing.

● Filtering: Allows the user to filter errors by categories. The Smart Dashboard
displays tables that list all the errors from the data submitted. The tables have a
built-in filtering system where when the user chooses a category from the table the
error reorganizes themselves alphabetically, numerically, lowest to highest vice
versa, etc..

● Search Filtering: Allows the users to filter through all the errors that retrieve the
closest matching error to the keyword the user typed. The Smart Dashboard
displays tables that list all the errors from the data submitted. Above the table to the
right is a text box where the user can type in a query that the table will start to
reorganize itself to find the closest matching error to the query typed.

● ViewMore Info: Allows the user to view the full error message. The Smart
Dashboard displays all errors from the data submitted. In every error there contains
a column with an eye icon that will allow the user to see more details about the
error when clicked.

4. Conclusions:

4.1. Results:

The Smart Dashboard was developed in order to help QTC consolidate errors that have
occurred in different systems from different applications. Our design allows the application
to load new business logic from different tenants by compiling their code into an assembly
and placing it in a folder. At runtime, the web application will scan the folder, load the
assembly, extract the business logic, and inject it into the interfaces of our web component.

The errors displayed on the screen are from the specific integration point and tenant. It
could be the case that the tenant pulls errors from a different data source apart from SQL
and Oracle which is possible by coding it into a new assembly and placing it into our
assemblies folder in the website component.

Multi-tenancy was accomplished as well as error retrieval from different data sources for
the specific tenant. Lastly, front-end features were implemented to improve the user
experience such as data limiting, pagination, help modal, long error message truncation,
view button to see the long error, and partial authentication.

4.2. Future:

With this application, QTC can see different errors from different data sources for multiple
tenants. Each page that displays the errors is specific to that one data source and tenant
which makes it easy to quickly identify and view errors for a specific client (tenant) and a
data source such as a SQL database. Although we accomplished the latest revision of
requirements, there are some future improvements that can be done to further improve the
application.

● User view - Currently the dashboard displays all of the information for the errors, it
should be the case that if the user is not an admin, they will only see a subset of
those errors with less information.

● Windows authentication - Users should be authenticated via Windows
authentication and not via passing the username and password as queries on the
browser.

● Homepage text - The homepage should be cleaned up and not include any
information that was used for development. Ideally, it should display the list of
errors for the tenant that shows up first in the left hand side menu.

● User roles/role mapping - There needs to be two roles, admins and users. Via role
mapping, admins should have the ability to see both system errors and application
errors whereas regular users should only be able to see application errors. This role
mapping should not be hard coded.

● More errors button - Button that when clicked will pull in 200 more errors.
● Error filtering - The admin should have a way to filter errors by system or

application level.

5. Introduction (Business Rule Engine):

5.1. Background:
The Business Rule Engine (BRE) is an application that is designed to execute business rules
at run time using predetermined logic. It is meant to automate business rules and functions
which would otherwise be done manually. The functionality of the Business Rule engine
may be accessed through either the Swagger or Postman UI. The motivation behind this
project is providing QTC with an easier way to handle, classify and review, among other
things, important medical data, documents and other relevant information.

5.2. Design Principles:

BRE is designed so that it recursively re-evaluates or executes a rule, until a final outcome
has been reached. Using the JSON objects also made it convenient to pass on the parameter
values based on which the Rule Engine will undertake in its process. The UI also makes it
easy to access other functionalities of the Rule Engine, such as adding or deleting a rule.

5.3. Design Benefits:

The purpose of the Business Rule Engine is to classify, sort and evaluate patient records,
among other things, with a centralized database. As it is an automated application, it
reduces the chance of human error when categorizing patients. The Rule Engine being
automated also allows for a faster response time, and provides customers a more efficient
and personalized experience. Another benefit of it is that it allows Business Analysts
themselves to make necessary changes to the business rules, procedures etc. without
needing the assistance of the IT professionals of their organizations.

5.4. Achievements:

Throughout the course of the year, the team had created a functional database that could be
accessed through the Swagger or Postman API. The Rule engine can create, delete and edit
rules and expressions, whilst also verifying if the expressions are within the rule engine to
check if the user can edit or delete an expression. The Engine can also notify users if there
are any exceptions or missing information in the database. Users can also utilize the Rule
Engine’s functionality with their own databases so long as they connect it through Azure.

6. Related Technologies:

6.1. Existing Solutions:
The Business Rule Engine, being an automation tool, since it is a very common tool used in
a whole host of industries. But, for our purpose, there were not many implementations
similar to what we were doing. Therefore, we did not use existing solutions as references
for our system.

6.2. Reused Technologies:

Like the Smart Dashboard, the Business Rule engine was developed using ASP.NET, C#, and
utilizes JSON and SQL Server for the backend. To organize the API methods, Swagger User
Interface was used. The Swagger UI provides an efficient way for the user to get access to
the API resources without much hassle. In addition to Swagger UI, another tool called the
Postman API platform was used, which made it easier to pass JSON objects along with the
necessary parameters into the Rule Engine.

7. System Architecture

7.1. Overview:

The Business Rule Engine will consist of multiple components, which all work in tandem.
One of those components is the database, which holds the data necessary for the evaluation
process. In addition, it also contains a plugin (file system) as well as an authentication
method. The plugin will make the API call to the database to retrieve the necessary data,
which will be used accordingly depending on the parameters and inputs that are provided.

7.2. Data Flow:

7.2.1 UI:

Using the Swagger UI, the user will be able to add, delete or edit a rule. Using Postman, the
user is able to pass parameters into the Rule Engine for the execution of rules

7.2.2 Rule Engine:

Checks the Database of Rules to see if it exists and sends the expression to be executed if it
does. Contains all the necessary logic to execute the rule. The final output will be displayed
to the user based on either a “Positive Action” or “Negative Action” which the Rule Engine
will evaluate and determine

7.2.3 Database of Rules:

All saved rules and expressions are stored in a database.

7.2.4 Rule Execution:

Executes rules accordingly and will execute recursively when required. Afterwards it passes
it on to the ActionHandler.

7.2.5 ActionHandler:

Handles the Executed rule and outputs the result to the user.

7.3. Implementation:

The rule engine can be accessed through Swagger as the base UI or through the Postman
interface. Both UIs allow users to test each individual function and rules.

7.3.1 Features:

● AddExpression: Users can add expressions to the database unless it already exists.
● EditExpression: Edits an expression but returns an error if it doesn’t exist.
● DeleteExpression: Deletes an existing expression.
● GetAllExpressions: Shows a list of all expressions.
● AddRule: Similarly to AddExpression, users can add rules to the database so long as

it doesn’t exist.
● EditExpression: Edits an existing rule but returns an error if it doesn’t exist.
● DeleteRule: Deletes an existing rule.
● GetAllRules: Shows all existing rules.
● ExecuteRule: Checks to see if the rule exists in the database before running the

rule’s functionality.

● Schemas: Lists the variables each expression or rule incorporates, for example
CreateRule works with only string values.

8. Conclusions:

8.1 Results:

The basic functionalities of the Rule Engine were successfully implemented. The Rule
Engine is able to take in multiple parameters with one or more JSON objects. Despite there
technically being no User Interface, the Rule Engine is easy to access using the Swagger UI
and the Postman API. The one feature that was not able to be implemented was Nested
Expressions, which are expressions within other expressions, which requires more complex
logic to be able to evaluate. There was a lot of trial and error involved in the process, and
eventually we found what worked.

8.2 Future:

The Business Rule Engine could be scaled up to a larger level to be able to support multiple
types of rules and multiple use cases. Organizations could have multiple implementations
of it depending on their needs. Instead of Swagger UI, a more dynamic and fluid system
could also be used on the Front End. Overall, the BRE could also be made more user
friendly.

9. References:

● C# Documentation:

C# Tutorial (C Sharp)

● Visual Studio 2022 Documentation:

Visual Studio documentation | Microsoft Learn

● SQL Server Management Studio Documentation:

Download SQL Server Management Studio (SSMS)

● Swagger API Documentation

Swagger Tutorial

● Postman API Documentation

Postman Download

https://www.w3schools.com/cs/index.php
https://learn.microsoft.com/en-us/visualstudio/windows/?view=vs-2022
https://learn.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver16
https://learn.microsoft.com/en-us/aspnet/core/tutorials/web-api-help-pages-using-swagger?view=aspnetcore-6.0
https://www.postman.com/downloads/

