
UAV Path Planning
Juan Tiguila
Jason Alvarez
Jonathan Dang
Jade de Jesus
Abraham Diaz

Marcos Olvera
Bryan Segovia
Prashant Tewary
Kevin Velez
Erick Vergara

Team 7
MathWorks

Advised by Dr. Manveen Kaur

Overview

Project Scope

Problem Components

Demo

Future Goals

Motivation

Revolutionizing urban transportation with
urban air mobility

Orchestrating collision-free paths for
multiple drones operating within the same
environment

Opportunity to make the future of
transportation and logistics efficient
and sustainable

The rise of urban air mobility, powered
by UAVs, can transform urban
transportation efficiency and
sustainability; however, the
simultaneous deployment of multiple
drones in shared urban spaces requires
the development of a collision-free
path planning algorithm.

Problem Statement

Scope

1. Skill Enhancement

2. Scenario Simulation

3. Single-Drone Path Planning

4. Multi-Drone Coordination

5. Centralized Tracking

6. Performance Evaluation

Team Workflow Chart

Juan Tiguila
Lara de Jesus
Marcos Olvera

Prashant Tewary

Landscape Team

Kevin Velez
Erick Vergara
Abraham Diaz

UAV Team

Bryan Segovia
Jason Alvarez

Jonathan Dang

Algorithm Team

Team Lead: Jade de Jesus
Communications Lead: Juan Tiguila
Documentation Lead: Abraham Diaz

Testing 3D environment with drone algorithm Drone data compatible with algorithm

Algorithm fits on the drone

Unreal Engine - Background

Landscape

C++ in Unreal Engine

● Ideal for performance-critical tasks,
ensuring optimal execution speed and
resource utilization.

● Used to implement artificial intelligence
(AI) behaviors for non-player characters.

Blueprints in Unreal Engine

● It is a visual scripting system
that allows developers to create
and manipulate game logic,
behaviors, and assets.

● Rapid Prototyping

Figure 2: Unreal Engine Blueprints

C++ vs. Blueprints in Unreal Engine

● C++ is more broad and offers more functionalities than Blueprints.
● C++ is used for optimizations to write more efficient algorithms or

low-level code.
● C++ can be integrated with Blueprints, a hybrid approach where

performance-critical code is implemented in C++, and higher-level
logic is handled in Blueprints.

● Blueprint is a visual scripting language which uses graphical nodes
● Blueprint is entry level program but also has more powerful tools for

advance programing

Youtube: Nitrogen at https://www.youtube.com/watch?v=ueOqcwlFfMc

Landscape - Scene

http://www.youtube.com/watch?v=alj0SV8Lz-U&t=36

Path-Planning Development

Algorithm

Algorithm

A* is designed to find the shortest path from a starting point to a goal
point in a graph or grid-based environment.

● It combines the advantages of Dijkstra's algorithm with heuristic
search

● Guarantees finding the shortest path.
● Employs a heuristic to guide the search, reducing computational

requirements.

Algorithm

PROS

Optimality: A* is known for finding the optimal path,
which is crucial in urban environments where
efficiency and safety are paramount.

Efficiency: A* can be more efficient than other
algorithms, such as Dijkstra's, for finding the
optimal path. It uses heuristics to guide the search,
which can significantly reduce the search space.

Real-Time Capabilities: A* is capable of real-time
path planning, making it suitable for dynamic and
complex urban environments where paths may need
frequent updates.

Global and Local Planning: A* can be used for both
global path planning (long-range navigation) and local
path planning (short-range obstacle avoidance).

CONS

Memory Usage: A* can be
memory-intensive, particularly in large
environments, as it needs to store
information about the nodes it has
explored. This can be a limitation in
resource-constrained environments.

Complexity of Implementation: While not
as complex as some other algorithms, A*
still requires careful implementation,
including handling open and closed
sets, and choosing an appropriate data
structure.

Algorithm

● Grid of nodes
● Objects are removed from

the grid to make sure that
we don’t fly through them

● Red line represents the
path the drone will take.

● Below is the array of
coordinates that the drone
will take.

[(0, 1), (1, 0), (2, 0), (3, 1), (4, 2), (5, 3), (6, 4), (7, 5), (8, 6), (9, 7), (10, 8), (11, 9),
(12, 10), (13, 11), (14, 12), (15, 13), (16, 14), (17, 15), (18, 16), (19, 17), (20, 18), (21, 19)]

Drone Development

UAV

Objective: Specify the baseline and if
possible minimal hardware limitations of the
drone that meet the fractional computation
time requirements for the underlying
algorithm to meet and providing a
controllable drone to simulate the automated
algorithm in a urban landscape.

UAV

Matlab and Simulink

Matrix efficient programming language

Graphical programming language

The UAV Drone

The MatLab quadcopter project illustrated an example UAV drone with all
of its basic required inputs for path planning.

UAV

Will briefly describe the baseline hardware and specify the main hardware

● Pixhawk PX4
● Bosch Sensortec BMI088
● Raspberry PI

Flight Controller

The flight controller is the brain of the
drone

Monitors and controls every action the drone
does

- Balance
- Stability
- Orientation

Pixhawk PX4 PIX 2.4.8

Great for multicopters

Integrated backup power supply

Built in gyroscope, accelerometer,
magnetometer and barometer

~$169.99

IMU Functionality

● Collects sensor data on motion, orientation, and sometimes magnetic
fields.

● Processes and fuses sensor data to determine:
○ Orientation in three-dimensional space
○ Changes in velocity, position, and altitude

● Provides real-time information for control systems

Bosch Sensortec BMI088

● The Bosch Sensortec BMI088 is a
high-performance Inertial Measurement
Unit (IMU) designed for precise
motion sensing in various
applications.

● Integrates a 3-axis accelerometer and
a 3-axis gyroscope.

● Offers precise measurement
capabilities for motion tracking and
orientation sensing.

● Advantages
○ Offers consistent and reliable

performance in motion sensing
applications.

○ Optimized power usage for extended
operation, ideal for battery-powered
devices.

○ Enables energy-efficient performance
without compromising accuracy.

Microcontroller

The microcontroller runs a single program repeatedly

Can run programs with more than one process

Firmware for communication with other running software on the drone

Talks to the flight controller about the environment

- Mission planning and navigation
- System health
- Emergency signals
- Communication with companion computers

Raspberry Pi

PROS

Suitable for various applications beyond drone control
- image processing, computer vision, and

communication.

Can run Linux and support a wide variety of programming
languages like C++ and Python.

- This means the drone can be interfaceable

Lots of computation power compared to microcontrollers

Attachable hardware
- Camera port, ethernet & wireless connectivity, USBs
 HDMI monitor, audio jack, GPIO, HATs, heat sinks,
 modules

CONS

Has overhead which impacts responsiveness
- Not real-time considering the importance of
 stabilization and control algorithms for drones

May notice fractional increase in delays with Python

High power consumption
- Simultaneously runs an Linux operating system

- $189.99 mini board computer
- 1.5GHz clock speed at 5V

Project Goal and Future Work/Plan

- Allow a single drone to navigate a three-dimensional simulated
environment

- Have a drone detect static and moving objects
- Introduce multiple drones in the landscape

Conclusion

To carry out this project we split into 3 groups that focused on one
major aspect of the project

- Landscape: created a 3D landscape to test the drone and its algorithm
- Algorithm: made to detect objects and maneuver through the landscape
- UAV: uses the algorithm and test its capabilities/functionality

Integration of MatLab and UE

- MatLab used to create algorithm and coding aspects
- Unreal Engine used for landscape design and testing the UAV

Resources and References

● Link to our GitHub repository
● Software Requirements Specification
● Software Design Document
● https://www.youtube.com/watch?v=ueOqcwlFfMc

https://github.com/tiguila/UAVPathPlanning
https://docs.google.com/document/d/1qnWXlNQnGRiqZB2wv2TjmMqi5UgCjAIb/edit
https://docs.google.com/document/d/13Sm9_q1d_uO5UjWQHishqYHE23N5F6Un/edit
https://www.youtube.com/watch?v=ueOqcwlFfMc

Thank you!

