
Software Design
Document

for

PDGo
Version 1.0 approved

Prepared by Alberto Barboza, Mina Mekhaiel, Kevin Ornelas, Fernando
Perez, Elizabeth Silvestre, Elias Schablowski, Qian Wang, Yin Win, Tommy

Youn, Andrew Zou

Santa Barbara Public Defender / Deepak Budwani, Brent Modell, Mark Perez

Dec 8, 2023



Table of Contents

Table of Contents........................................................................................................................... 2
Revision History.............................................................................................................................4
1. Introduction................................................................................................................................4

1.1 Purpose.................................................................................................................................5
1.2 Document Conventions........................................................................................................5
1.3 Intended Audience and Reading Suggestions......................................................................5
1.4 System Overview.................................................................................................................5

2. Design Considerations............................................................................................................... 5
2.1 Assumptions and Dependencies.......................................................................................... 6
2.2 General Constraints..............................................................................................................6
2.3 Goals and Guidelines........................................................................................................... 6
2.4 Development Methods......................................................................................................... 7

3. Architectural Strategies.............................................................................................................7
4. System Architecture.................................................................................................................10
5. Policies and Tactics.................................................................................................................. 12

5.1 Choice of which specific products used.............................................................................12
5.2 Plans for ensuring requirements traceability
…Describe….......................................................................................................................... 12
5.3 Plans for testing the software.............................................................................................12
5.# Engineering trade-offs....................................................................................................... 12
5.# Coding guidelines and conventions................................................................................... 12
5.# The protocol of one or more subsystems, modules, or subroutines...................................12
5.# The choice of a particular algorithm or programming idiom (or design pattern) to
implement portions of the system's functionality.................................................................... 12
5.# Plans for maintaining the software.................................................................................... 12
5.# Interfaces for end-users, software, hardware, and communications..................................12
5.# Hierarchical organization of the source code into its physical components (files and
directories)............................................................................................................................... 12
5.# How to build and/or generate the system's deliverables (how to compile, link, load, etc.)...
13
5.# Describe tactics such as abstracting out a generic DatabaseInterface class, so that
changing the database from MySQL to Oracle or PostGreSQL is simply a matter of rewriting
the DatabaseInterface class...................................................................................................... 13

6. Detailed System Design............................................................................................................14
6.x Name of Component (Module).........................................................................................14
Time-Off Request Notification System................................................................................... 15

7. Detailed Lower level Component Design...............................................................................18



7.x Name of Class or File....................................................................................................... 18
8. Database Design....................................................................................................................... 19
9. User Interface........................................................................................................................... 20

Overview of User Interface......................................................................................................20
Screen Wireframes or Images.................................................................................................. 20
User Interface Flow Model...................................................................................................... 25

10. Requirements Validation and Verification.......................................................................... 25
11. Glossary..................................................................................................................................26
12. References...............................................................................................................................26



Revision History

Name Date Reason For Changes Version

Initial draft Dec 5, 2023 Initial draft of documentation 1.0

Update doc Dec 8, 2023 Update Design, UI, Diagrams, System
Design, Glossary

1.1



1. Introduction
1.1 Purpose

The purpose of this document is to define the software design of PDGo.

1.2 Document Conventions

The entire documentation will be written in Times New Roman font at size 12 for descriptions,
size 14 and bolded for minor headings, and size 20 and bolded for major headings.

1.3 Intended Audience and Reading Suggestions

This document is primarily intended for the following audiences:

● PDGo Developers
● PDGo Project Liaisons
● PDGo Documentation writers

The document could also be intended for the users of the app, who are interested in how the app
is designed as well as a better understanding of how to navigate the app.

1.4 System Overview

The system is a management application that is built using Microsoft's PowerApps in order to
automate many filing systems within the Santa Barbara Public Defender's office. The software is
primarily designed for the mobile environment and will be utilized on small devices for quick
and easy access to department-wide information. This information includes, but is not limited to,
time off request submissions and statuses, user profiles, attorney training videos, Microsoft 365
Calendars, and facility requests. The intended use of the application is for users to manage their
internal resources on a one-in-all application and receive relevant notifications and updates on
internal forms. The basic design involves combining Microsoft PowerApps, SharePoint, and
Automate in order to create a standard frontend and backend interface for the application.



2. Design Considerations
2.1 Assumptions and Dependencies

Assumptions:

● PDGo will run on standard office computers and mobile devices used within the Santa
Barbara Public Defender's Information Technology department.

● Users have access to the internet while using the application to be able to use all of its
features.

Dependencies:

● Power Apps
● Microsoft SharePoint
● Power Automate
● Internet Browser

2.2 General Constraints

● Stable Internet connection
● Each user would need access to a valid SBPD account with the appropriate PowerApps

licensing

2.3 Goals and Guidelines

Describe any goals, guidelines, principles, or priorities which dominate or embody the design of
the system's software. For each such goal or guideline, unless it is implicitly obvious, describe
the reason for its desirability. Feel free to state and describe each goal in its own subsubsection if
you wish. Such goals might be:

● The KISS principle ("Keep it simple stupid!")
● The Software has a mandatory delivery date that must be met (end of the cd3337
class)
● Emphasis on speed versus memory use
● The product should work, look, or "feel" like an existing product

The goal of the product is to create a fully functional, accessible, responsive, and robust
administrative system that allows SPBD employees to manage their Time Off Requests,
Trainings, and Facility Requests with ease in a mobile environment. The product should work,
look, or "feel" like Workday.



2.4 Development Methods

Briefly describe the method or approach used for this software design. If one or more
formal/published methods were adopted or adapted, then include a reference to a more detailed
description of these methods. If several methods were seriously considered, then each such
method should be mentioned, along with a brief explanation of why all or part of it was used or
not used.

These would be things such as the ‘Water Fall Development’ methods, ‘Agile Development’,
‘Unplanned Mad Scramble Development’, or other development models and variations. Describe
how these were applied in the case of your project.



3. Architectural Strategies
Describe any design decisions and/or strategies that affect the overall organization of the system
and its higher-level structures. These strategies should provide insight into the key abstractions
and mechanisms used in the system architecture. Describe the reasoning employed for each
decision and/or strategy (possibly referring to previously stated design goals and principles) and
how any design goals or priorities were balanced or traded-off. Such decisions might concern
(but are not limited to) things like the following:

● Use of a particular type of product (programming language, database, library, etc.
...)

● Reuse of existing software components to implement various parts/features of the
system

● Future plans for extending or enhancing the software

● User interface paradigms (or system input and output models)

● Hardware and/or software interface paradigms

● Error detection and recovery

● Memory management policies

● External databases and/or data storage management and persistence

● Distributed data or control over a network

● Generalized approaches to control

● Concurrency and synchronization

● Communication mechanisms

● Management of other resources

Each significant strategy employed should probably be discussed in its own subsection.
Make sure that when describing a design decision that you also discuss any other
significant alternatives that were considered, and your reasons for rejecting them (as well
as your reasons for accepting the alternative you finally chose).

PowerApps Canvas was used to create PowerApps. Canvas applications follow a UI-first
approach that means that many actions are embedded alongside their UI components which
trigger them. This approach was used as it allows greater flexibility in adding actions and data
displays than a model-driven application.

PowerApps was chosen due to the existing infrastructure at SBPD to support PowerApps
and related functions. Furthermore, as all SBPD employees have their own Microsoft 365
account, access can easily be controlled.



PDGo follows a mobile-first design. This allows SBPD employees to access PDGo on
their county issued devices, along with greater access management, and the ability to scan
information.

PowerAutomate was chosen for some complex and scheduled tasks, as it runs
independently of any client devices, and can therefore have higher availability along with higher
responsiveness for heavy workloads.

PDGo primarily uses push notifications as this allows easier deep linking into the specific
screen to see where the notification originated from.

PDGo was designed to have all companion information, i.e. information linked to
restricted fields in other applications, to sharepoint lists with dropdowns to ensure that data entry
is valid.

PDGo was designed with tracing to allow easier debugging both during development,
monitoring, and maintenance as errors can be re-engineered more easily.

The user interface of PDGo was designed to be themable to allow easier adjustments
when SBPD updates their colors.

PDGo uses SharePoint lists to store information due to high availability and easy
integration into PowerApps. Furthermore, SharePoint is one of the few connectors allowed for
government entities.



4. System Architecture

This section should provide a high-level overview of how the functionality and responsibilities
of the system were partitioned and then assigned to subsystems or components. Don't go into too
much detail about the individual components themselves (there is a subsequent section for
detailed component descriptions). The main purpose here is to gain a general understanding of
how and why the system was decomposed, and how the individual parts work together to provide
the desired functionality.

This is where the level 0 DFD will probably work best.

At the top-most level, describe the major responsibilities that the software must undertake and
the various roles that the system (or portions of the system) must play. Describe how the system
was broken down into its modules/components/subsystems (identifying each top-level
modules/component/subsystem and the roles/responsibilities assigned to it).

Each subsection (i.e. “4.1.3 The ABC Module”) of this section will refer to or contain a detailed
description of a system software component.



Level 1 Data Flow Diagrams (DFD) and Control Flow Diagrams (CFD) should probably go
here.

Describe how the higher-level components collaborate with each other in order to achieve the
required results. Don't forget to provide some sort of rationale for choosing this particular
decomposition of the system (perhaps discussing other proposed decompositions and why they
were rejected). Feel free to make use of design patterns, either in describing parts of the
architecture (in pattern format), or for referring to elements of the architecture that employ them.
Diagrams that describe a particular component or subsystem in detail should be included within
the particular subsection that describes that component or subsystem.



5. Policies and Tactics

Describe any design policies and/or tactics that do not have sweeping architectural implications
(meaning they would not significantly affect the overall organization of the system and its
high-level structures), but which nonetheless affect the details of the interface and/or
implementation of various aspects of the system. Make sure that when describing a design
decision that you also discuss any other significant alternatives that were considered, and your
reasons for rejecting them (as well as your reasons for accepting the alternative you finally
chose). Such decisions might concern (but are not limited to) things like the following (Must
include 5.1, 5.2, and 5.3. The rest of these categories or custom ones can be added as needed.):

5.1 Choice of which specific products used
(IDE, compiler, interpreter, database, library, etc. ...)

5.2 Plans for ensuring requirements traceability
…Describe…

5.3 Plans for testing the software
…Describe…

5.# Engineering trade-offs

…Describe…

5.# Coding guidelines and conventions

…Describe…

5.# The protocol of one or more subsystems, modules, or subroutines

…Describe…

5.# The choice of a particular algorithm or programming idiom (or design
pattern) to implement portions of the system's functionality

…Describe…

5.# Plans for maintaining the software
…Describe…

5.# Interfaces for end-users, software, hardware, and communications
…Describe…

5.# Hierarchical organization of the source code into its physical components
(files and directories).

…Describe…



5.# How to build and/or generate the system's deliverables (how to compile,
link, load, etc.)

…Describe…

5.# Describe tactics such as abstracting out a generic DatabaseInterface class,
so that changing the database from MySQL to Oracle or PostGreSQL is
simply a matter of rewriting the DatabaseInterface class.

For this particular section, it may become difficult to decide whether a particular policy or set of
tactics should be discussed in this section, or in the System Architecture section, or in the
Detailed System Design section for the appropriate component. You will have to use your own
"best" judgement to decide this. There will usually be some global policies and tactics that
should be discussed here, but decisions about interfaces, algorithms, and/or data structures might
be more appropriately discussed in the same (sub) section as its corresponding software
component in one of these other sections.



6. Detailed System Design

Most components described in the System Architecture section will require a more detailed
discussion. Each subsection of this section will refer to or contain a detailed description of a
system software component. The discussion provided should cover the following software
component attributes:

This is where Level 2 (or lower) DFD’s will go. If there are any additional detailed component
diagrams, models, user flow diagrams or flowcharts they may be included here.

6.x Name of Component (Module)
6.x.1 Responsibilities

The primary responsibilities and/or behavior of this component. What does this
component accomplish? What roles does it play? What kinds of services does it provide
to its clients? For some components, this may need to refer back to the requirements
specification.

6.x.2 Constraints

Any relevant assumptions, limitations, or constraints for this component. This should
include constraints on timing, storage, or component state, and might include rules for
interacting with this component (encompassing preconditions, post conditions, invariants,
other constraints on input or output values and local or global values, data formats and
data access, synchronization, exceptions, etc.)

6.x.3 Composition

A description of the use and meaning of the subcomponents that are a part of this
component.

6.x.4 Uses/Interactions

A description of this components collaborations with other components. What other
components is this entity used by? What other components does this entity use (this
would include any side-effects this entity might have on other parts of the system)? This
concerns the method of interaction as well as the interaction itself. Object-oriented
designs should include a description of any known or anticipated subclasses, superclass’s,
and metaclasses.

6.x.5 Resources

A description of any and all resources that are managed, affected, or needed by this
entity. Resources are entities external to the design such as memory, processors, printers,
databases, or a software library. This should include a discussion of any possible race
conditions and/or deadlock situations, and how they might be resolved.



6.x.6 Interface/Exports

The set of services (classes, resources, data, types, constants, subroutines, and
exceptions) that are provided by this component. The precise definition or declaration of
each such element should be present, along with comments or annotations describing the
meanings of values, parameters, etc. For each service element described, include (or
provide a reference) in its discussion a description of its important software component
attributes (Classification, Definition, Responsibilities, Constraints, Composition, Uses,
Resources, Processing, and Interface).

Time-Off Request Notification System

Responsibilities

1. Notify Supervisors of new Time Off Requests
2. Monitor Stale Time Off requests and notify Supervisors periodically

Constraints

Performance Constraints:
The performance of the Time-Off Request Notification System has several constraints:

● Internet connection speed
● Microsoft PowerApps' service latency.

Security Constraints:
In terms of security, the Time-Off Request Notification System faces several constraints:

● Reliability of security audits and vulnerability assessments.
● Restrictions of user and data access to authorized personnel.

Reliability Constraints
The reliability of the Time-Off Request Notification System is dependent on several factors:

● Uptime of the Microsoft PowerApps service
● An active carrier device is available
● Automated backups



Composition

Uses/Interactions

  The Time-Off Request Notification System is divided into two flows: Notification Flow and
Approval Flow.
The Notification Flow operates as follows:

1. The addition of a Time-Off request triggers subsequent actions.
2. The email notification is triggered
3. The mobile notification is triggered.

The Approval Flow operates within the following procedure:

1. The modification of a request will trigger the search for a Requestor from the user.
2. The request will be updated according to its status as decided by a switch, options are:

1. Cancelled: A notification is not sent
2. Pending: Notify the manager in a periodic manner



3. Approved: Update the value to Approved and trigger Notification Flow.
4. Rejected: Update the value to 'Rejected' and trigger Notification Flow.

Interface/Exports

The application is aimed at providing specific interfaces and exports for internal use by the Santa
Barbara Public Defender's Office. These interfaces are only to be used within the organization
and are not authorized for external use.

Much of the information that appears in this section is not necessarily expected to be kept
separate from the source code. In fact, much of the information can be gleaned from the source
itself (especially if it is adequately commented). This section should not copy or reproduce
information that can be easily obtained from reading the source code (this would be an unwanted
and unnecessary duplication of effort and would be very difficult to keep up-to-date). It is
recommended that most of this information be contained in the source (with appropriate
comments for each component, subsystem, module, and subroutine). Hence, it is expected that
this section will largely consist of references to or excerpts of annotated diagrams and source
code.



7. Detailed Lower level Component Design

Other lower-level Classes, components, subcomponents, and assorted support files are to be
described here. You should cover the reason that each class exists (i.e. its role in its package; for
complex cases, refer to a detailed component view.) Use numbered subsections below (i.e.
“7.1.3 The ABC Package”.) Note that there isn't necessarily a one-to-one correspondence
between packages and components.

7.x Name of Class or File

7.x.1 Classification

The kind of component, such as a subsystem, class, package, function, file, etc.

7.x.2 Processing Narrative (PSPEC)

A process specification (PSPEC) can be used to specify the processing details

7.x.3 Interface Description

7.x.4 Processing Detail

7.x.4.1 Design Class Hierarchy

Class inheritance: parent or child classes.

7.x.4.2 Restrictions/Limitations

7.x.4.3 Performance Issues

7.x.4.4 Design Constraints

7.x.4.5 Processing Detail For Each Operation



8. Database Design

Include details about any databases used by the software. Include tables and descriptions.

PDGo uses various Sharepoint lists as connectors to store and retrieve datasets and acts like a
simple database management system. Its paid time off request, MCLE trainings, and userbase
uses Sharepoint in order to access values associated to the user information associated to the
page.

● Starting with Users, they carry personnel information regarding their position and role.
This organizes how PDGo’s interface will be presented as certain features can be shown
or hidden. Having a user list will also filter information from the MCLE trainings and
PTO request to present data that is tailored to the user based on previous entrees.

● PTO request feature stores user requests and for supervisors to decide whether to
approved or deny the request. sharepoint stores all the data that users from PDGo have
submitted and is changed based on the supervisors choice.

● The MCLE trainings will hold data for the user to view what trainings are available based
on the positions requirements. Supervisors will be able to view their employees progress
and completions of these trainings as a way to document employee experiences.



9. User Interface
Overview of User Interface

Screen Wireframes or Images

Time Off Request Screens

When the user selects the time-off request option from the menu, they are redirected to the screen
on the left. In this screen, the user would be able to see all of the requests that they started but
haven't submitted yet. For each request that appears on the screen, the user would be able to edit
that request or delete the request. We made the color choice blue for "edit" and red for "delete"
so that the user could tell them apart. The user can also write in the text box if they have
additional information they wish to add. The second screen is what the user would see when they
make a new request or if they're editing an existing request. The start and the end date are set two
weeks in advance from the current date by default. If the user selects the entire day toggle, the
start and end times will be deleted. The start and end times as well as the reason code are chosen
by drop boxes. If the user selects "other" for the reason code, they would have to write something
in the text box before adding the request. Once the user selects the "add to requests" button, the
request will be added to the request screen on the left.



Once the user submits their request, they will be redirected to the success screen. This would let
the user know that their requests have been submitted successfully. The success screen would be
on the user's screen for around 3 seconds and then transition to the main menu of the app.



The user is also able to view all of the requests that they submitted as well as the status of those
requests.



Those who are supervisors would be able to see all of the time-off requests from all employers as
well as their status.





User Interface Flow Model

Users are categorized by three types, user, supervisor and admin. All users will see the same
interface menu with a similar set of categories varied by role. Users will have access to most
functions for regular use such as scheduling, receiving notifications, completing trainings and
viewing their own personnel profile. Supervisors and Admins on the other hand, can be given
administrative privileges that allows them to respond to user requests, along with the same user
features accessible in the menu.
10. Requirements Validation and Verification

Create a table that lists each of the requirements that were specified in the SRS document for this
software.
For each entry in the table list which of the Component Modules and if appropriate which UI
elements and/or low level components satisfies that requirement.
For each entry describe the method for testing that the requirement has been met.



11. Glossary

An ordered list of defined terms and concepts used throughout the document. Provide definitions
for any relevant terms, acronyms, and abbreviations that are necessary to understand the SDD
document.  This information may be listed here or in a completely separate document.  If the
information is not directly listed in this section provide a note that specifies where the
information can be found.

Term Definition

PDGo The application being developed

SBPD Santa Barbara Public Defender's Office

MCLE Minimum Continuing Legal Education

TO Time Off

PTO
Paid Time Off

SRS
Software Requirements Specification (this Document)

Section 508
A legal requirement to make applications accessible to people with
impairments using technology

Microsoft Power Apps
A low-code environment to create apps for business applications

Microsoft Sharepoint Lists
A component of Microsoft Sharepoint

12. References

<List any other documents or Web addresses to which this SDD refers. These may include other
SDD or SRS documents, user interface style guides, contracts, standards, system requirements
specifications, use case documents, or a vision and scope document. Provide enough information
so that the reader could access a copy of each reference, including title, author, version number,
date, and source or location.>



PDGo Software Requirements Specification: https://ascent.cysun.org/project/project/view/203,
under the "References" section

Workday: https://www.workday.com/

https://ascent.cysun.org/project/project/view/203
https://www.workday.com/

