
Software Design
Document

for

Want2Remember
Version 1.0 approved

Prepared by
Adrian Soria Project Co-Lead

Davy Chi Project Co-Lead
Zain Syed Documentation Co-Lead
Joanne Wu Documentation Co-Lead

Nicholas Barger Engineer
Kevin Fong Engineer
Hein Htet Engineer

Jennifer Lizarraga Engineer
Carlos Ramirez Engineer

Ivan Wang Engineer
Huiping Guo Faculty Advisor

Jesus Rodriguez We2Link Product Manager
Ricardo Marroquin We2Link Liaison

Michael Malone We2Link CEO

08 December 2023

1

Table of Contents... <pg 2>
Revision History...<pg 4>

1. Introduction..<pg 5>
1.1. Purpose...<pg 5>
1.2. Document Conventions……………………... <pg 5>
1.3. Intended Audience and Reading Suggestions..<pg 5>
1.4. System Overview... <pg 5>

2. Design Considerations... <pg 5>
2.1. Assumptions and dependencies... <pg 5>
2.2. General Constraints..<pg 6>
2.3. Goals and Guidelines...<pg 6>
2.4. Development Methods...<pg 6>

3. Architectural Strategies..<pg 7>
4. System Architecture...<pg 8>

4.1. ... <pg 8>
4.2. ... <pg 9>

5. Policies and Tactics..<pg 12>
5.1. Specific Products Used...<pg 12>
5.2. Requirements traceability..<pg 13>
5.3. Testing the software...<pg 13>
5.4. Engineering trade-offs..<pg13 >
5.5. Guidelines and conventions..<pg 13>
5.6. Protocols...<pg 13>
5.7. Maintaining the software..<pg 13>
5.8. Interfaces..<pg 13>
5.9. System's deliverables..<pg 13>

5.10. Abstraction...<pg 13>
6. Detailed System Design...<pg 14>

6.1 Detailed System Design
6.1.1 Responsibilities...<pg15>
6.1.2 Constraints..<pg15>
6.1.3 Composition..<pg15>
6.1.4 Uses/Interactions...<pg15>
6.1.5 Resources...<pg15>
6.1.6 Interface/Exports...<pg15>

6.2 MemoryScreen.js...<pg15>
6.2.1 Responsibilities ……………..<pg15>
6.2.1 Constraints...<pg16>
6.2.1 Composition..<pg16>
6.2.1 Uses/Interactions...<pg16>
6.2.1 Resources..<pg16>
6.2.1 Interface/Exports..<pg16>

6.3 CreateScreen.js...<pg16>
6.3.1 Responsibilities ……………..<pg16>
6.3.2 Constraints...<pg16>
6.3.3 Composition..<pg16>

2

6.3.4 Uses/Interactions...<pg16>
6.3.5 Resources..<pg16>
6.3.6 Interface/Exports..<pg16>

6.4 MoreDetailScreen.js..<pg16>
6.4.1 Responsibilities ……………..<pg16>
6.4.2 Constraints...<pg16>
6.4.3 Composition..<pg17>
6.4.4 Uses/Interactions...<pg17>
6.4.5 Resources..<pg17>
6.4.6 Interface/Exports..<pg17>

6.5 ContactScreen.js...<pg17>
6.5.1 Responsibilities ……………..<pg17>
6.5.2 Constraints...<pg17>
6.5.3 Composition..<pg17>
6.5.4 Uses/Interactions...<pg17>
6.5.5 Resources..<pg17>
6.5.6 Interface/Exports..<pg17>

6.6 ContactsDetailsScreen.js..<pg17>
6.6.1 Responsibilities ……………..<pg17>
6.6.2 Constraints...<pg17>
6.6.3 Composition..<pg17>
6.6.4 Uses/Interactions...<pg17>
6.6.5 Resources..<pg17>
6.6.6 Interface/Exports..<pg17>

7. Detailed Lower level Component Design..<pg 18>
7.x Name of Class or File..<pg18>

7.x.1 Classification..<pg 18>
7.x.2 Processing Narrative(PSPEC)..<pg 18>
7.x.3 Interface Description..<pg 18>
7.x.4 Processing Detail...<pg 18>

7.x.4.1 Design Class Hierarchy...<pg 18>
7.x.4.2 Restrictions/Limitations..<pg 18>
7.x.4.3 Performance Issues...<pg 18>
7.x.4.4 Design Constraints...<pg 18>
7.x.4.5 Processing Detail For Each Operation...<pg 18>

8. User Interface
8.1. Overview of User Interface...<pg 20>
8.2. Screen Frameworks or Images..<pg 20>
8.3. User Interface Flow Model...<pg 20>

9. Database Design...<pg 20>
10. Requirements Validation and Verification...<pg 23 >
11. Glossary..<pg 25>
12. References..<pg 25>

3

Revision History

Name Date Reason For Changes Version

<Add rows as necessary when the document is revised. This document should be consistently
updated and maintained throughout your project. If ANY requirements are changed, added,
removed, etc., immediately revise your document.>

4

1. Introduction
1.1 Purpose

Want2Remember is a web application that shall assist those with cognitive impairments
remember day-to-day tasks and memories. This system shall keep track of user-generated data,
such as memories, to-do lists, and appointments, as well as contacts and payment information.
This document shall explain the functionality, design, architecture, and requirements of the
Want2Remember application.

1.2 Scope
The purpose of this document is to provide an overview of the design and development of this
project, as well as the recommended procedures and available resources for developers and
maintainers of Want2Remember. This document is not an expression of formal policy; it contains
documentation for the Want2Remember system and generally agreed-upon best practices.

1.3 Intended Audience and Reading Suggestions
This document is for the use in the California State University of Los Angeles (CSULA)
Computer Science department. This document will be covering the details of the Senior Design
Project of the We2Link sponsored group. The intended audience for this project are the
professors and students of CSULA, as well as the employees of We2Link.

1.4 System Overview
Want2Remember uses a component-based architecture that allows for the reusability of
components so that it reduces the size and complexity of our codebase.

2. Design Considerations
2.1 Assumptions and Dependencies

Software used to support the Want2Remember application include:

● JavaScript

● ReactJS

● Github

● JIRA & Agile Development Technology

● Firebase

5

2.2 General Constraints

The major hurdles associated with this project are:

● Learning the JavaScript web application framework, ReactJS

We were given access to the Udemy course “React - The Complete Guide (incl Hooks, React
Router, Redux)” to guide us through the framework and language. To collaborate, we formed
sub-teams to break down the project objectives into manageable pieces. We met virtually twice
weekly for status updates and sprint retrospectives and communicated via Slack/discord with our
sub-team members. Using firebase to emulate the web app.

2.3 Goals and Guidelines

Want2Remember is a mobile and web application to help those with memory issues - whether
they are from brain injuries, Alzheimer’s, or other cognitive impairments. The Want2Remember
app shall provide the user templates to log memories, passwords, to-do lists, medications,
appointments, contacts, and other important things the user may want to remember. The user
shall be able to record events and reminders from the past, present, and future.

The software features shall help facilitate the user’s ability to live independently, return to work,
maintain social interaction, increase work efficiency, maintain personal safety, as well as any
other needs that may come up in development. The web app features shall also help facilitate
caregiver needs, as well as improve medical support.

Due to the need for simplicity and reliability, we chose the respective technologies because of the
support and modularization they offer. We take the feedback from our beta testers to refactor the
code and make improvements. The hope is for Want2Remember to be a viable product and to go
to market by Summer 2024.

2.4 Development Methods

The approach used to this project is that the web team used React and JavaScript for the
development of the web application and the mobile team used React Native with JavaScript for
the mobile application. The usage of React and React Native allowed us to efficiently develop
and maintain the codebase, as these frameworks enable component-based development and easy
code reuse between the web and mobile applications. The Agile framework is also utilized for
project management, receiving incoming tasks, task monitoring and assignment . We also used a
backend platform, Firestore, to store the user’s data which can integrate with the frontend

6

efficiently, enabling seamless communication between the user interface and database. The
integration with Firestore not only facilitates real-time data synchronization but also ensures a
responsive and dynamic user experience. As for the development environment, Visual Studio
Code was used for its robust features, extensions, compatibility with React and React Native, and
the live share function where team members can work collaboratively.

3. Architectural Strategies
For the choice of technologies and development environment, we used React and React Native
as the primary development frameworks for the web and mobile applications, respectively.
JavaScript is used as the primary programming language for its versatility and widespread
support. As for development tools and environments, we used VS Code as the primary code
editor and Android Studio, Xcode for platform-specific development and testing. For data
storage and management, we used Firestore emulator to facilitate offline development and
testing. It ensures reliable data interactions even without a live Firestore connection. The UI
framework and styling include Tailwind CSS, which adopts a utility-first approach, offering a
highly configurable, maintainable styling solution. It promotes consistent styling across
components, ensuring a cohesive and visually appealing user interface. To improve the overall
mobile application, implementing the location picker and time detection with platform-specific
considerations for Android and older versions. Recognizing and addressing issues related to
older Android versions demonstrates a commitment to providing a positive user experience
across a diverse range of devices. These design decisions collectively contribute to the overall
organization of the system, focusing on cross-platform development, efficient tooling, robust
data management, and a consistent and visually appealing user interface

7

4. System Architecture

4.1 Level 0 DFD

The Want2Remember app is meant to allow users to store and create memories while allowing
caregivers to support the user. In our implementation, we stored memories and user data in
Firebase. Users who interact with the Want2Remember app can create and edit memories. When
a change is detected, a change is made in Firebase. Finally, caregivers have the ability to interact
with the app to assist the user.

8

4.2 Level 1 DFD

When the user is directed to the login page and enters their login credentials, the data is stored
in Firebase. There is also an option for the user to create a new account and log in, which will
also be saved. Firebase is able to store the data, so it is maintained every time the user logs in.
The components for the screen are created using React JS, a Javascript library. The
screens all display individual components that are imported. The screens that are created using
React include the Caregivers, Memories, Account, and the Create Button screen. The account
screen has a modal that displays the account information, along with several options that the
user can choose from for their account. These include Importing memories, exporting
memories, creating and editing pins, sending feedback, and help/FAQ. The create memory
button directs the user to a screen to view existing memories with tags. They also had the option
to create a new memory through the Create Memory page. The Create Memory page has types of
memories available to select, and there are components that each memory will have. These
components include Category, Date, Time, Status, Reminders, Location, Credit Card, and
Custom Info. The info for each component is written and stored on Firebase each time they
are edited and saved. The main reason why this layout for the DFD level 1 was chosen was
because it is easy to follow the order flow of the system. The arrows clearly define the
interaction and relationship between the various components and subsystems.

9

Below are more architectural designs behind our project.

10

11

5. Policies and Tactics

5.1 Choice of which specific products used
Programming/Development:

● Firebase emulator for data storage.
● HTML for frontend development.
● Tailwind CSS for the design and to speed up the development process by writing

less code.
● Visual Studio Code is the IDE for open-source code editing.
● Javascript/React is used for implementing functions, and React is a framework for

web teams to maintain states in components.
● React Native as a framework for mobile team front-end development.
● Android Studio is the IDE for Android phone app development
● Xcode for Apple platforms

12

5.2 Plans for ensuring requirements traceability

Source Control:

GitHub

Jira (Agile Tracking)

Jira provides a structured and centralized platform for tracking requirements, tasks, and issues.

Its flexibility allows adaptation to the agile development approach Want2Remember may follow.

These decisions in the choice of specific products and plans for ensuring requirements
traceability contribute to the efficiency, maintainability, and collaboration aspects of the
Want2Remember web application without imposing significant architectural changes.

5.3 Plans for testing the software

In the context of the software, various engineering trade-offs were considered to balance
conflicting objectives and constraints. It involved the choice between optimizing for performance
and ensuring a smooth user experience. This decision impacted the selection of data storage
solutions, such as Firestore, for efficient real-time data synchronization in both mobile and web
applications. Firestore offers real-time updates but might come with associated costs in terms of
database operations. To maintain code quality and consistency across the development team,
comprehensive coding guidelines and conventions were established. This included adherence to
ESLint for static code analysis and Prettier for code formatting. Each subsystem, module, or
subroutine within "want2remember" followed a well-defined protocol to facilitate seamless
communication and interoperability. This included standardized input and output formats,
error-handling procedures, and clear documentation for function usage. A proactive approach to
software maintenance was adopted, emphasizing regular updates, bug fixes, and feature
enhancements. A clear plan for version control using tools like Git was established, ensuring a
systematic approach to tracking changes and rolling out updates. The design of
"want2remember" involved defining interfaces for various stakeholders. End-user interfaces
were crafted to provide an intuitive experience on both mobile and web platforms.

13

6. Detailed System Design
6.1.1 Responsibilities

The Memory Creation Module within the "want2remember" system serves as a pivotal
component dedicated to facilitating the creation of memories for patients dealing with
cognitive impairment. This module is designed to empower clients to capture and store
significant moments, events, or information they want to remember. It plays a crucial role
in enhancing the quality of life for individuals facing memory challenges. The software
includes a memory input interface, timestamp and location integration, reminder, and
personalization features. The memories screen interface allows users to add memories in
different categories, aiming for an intuitive and user-friendly interface for the memories
screen.

6.1.2 Constraints

Currently, some of the data is getting read directly from the firestore which causes
inefficiency.

6.1.3 Composition

We used GitHub as the centralized repository for storing the source code and project
documentation. It ensures versioned and collaborative development, allowing team
members to access, contribute, and review code changes. It utilizes branches for parallel
development, bug fixes, and feature implementations. The pull request feature in Git is
leveraged for code review and collaboration among team members. We also used the
Agile framework for task management, sprint planning, and iterative development.

6.1.4 Uses/Interactions

The User will be able to see all the memories created and edit them, as well as filter and
search them

6.1.5 Resources

6.1.6 Interface/Exports

6.2 MemoryScreen.js
6.2.1 Responsibilities

Memory landing page. Users will see an overview of all the memories they have created

on this application.

14

6.2.2 Constraints

The home screen is responsible for the most navigation and the most detailed user

interface. This is the user’s first impression of the application and must be simple, have

good flow, and be intuitive to use.

6.2.3 Composition

Memories must be created before they can be displayed, filtered, searched, or edited.

6.2.4 Uses/Interactions

6.2.5 Resources

6.2.6 Interface/Exports

6.3 CreateScreen.js
6.3.1 Responsibilities

Will allow the user to create a new memory.

6.3.2 Constraints

The Create Memory button will be easily accessible on the bottom toolbar and in the
memories screen.

6.3.3 Composition

6.3.4 Uses/Interactions

After clicking the Create Memory button, the user will go to the CreateScreen, where
they will fill out a form consisting of different memories names, categories, any files to
attach, statuses, tags, etc.

6.3.5 Resources

6.3.6 Interface/Exports

6.4 MoreDetailScreen.js
6.4.1 Responsibilities

MoreDetailScreen will show the user all the details of the memory as well as the option
to edit the information

6.4.2 Constraints

User will be able to access the MoreDetailScreen by simply tapping the memory

15

6.4.3 Composition

6.4.4 Uses/Interactions

User will be able to see details of memory such as the date it was created and updated,
and the user will be able to edit the memory information by clicking the edit button in the
memory moreDetailScreen

6.4.5 Resources

6.4.6 Interface/Exports

6.5 ContactsScreen.js
6.5.1 Responsibilities

ContactsScreen will show the user all contacts they have saved

6.5.2 Constraints

User will have to save the contacts before they appear on the contacts screen

6.5.3 Composition

6.5.4 Uses/Interactions

User will be able to click on the contacts button in the toolbar and be redirected to the
ContactsScreen screen and see all their contacts they have saved

6.5.5 Resources

6.5.6 Interface/Exports

6.6 ContactsDetailsScreen.js
6.6.1 Responsibilities

ContactDetailsScreen will show the information of contacts the user has saved

6.6.2 Constraints

ContactDetailsScreen will only be available for contacts the user has saved

6.6.3 Composition

6.6.4 Uses/Interactions

ContactsDetailsScreens will be available through the ContactsScreen, where user will be
able to see all the contact information

6.6.5 Resources

6.6.6 Interface/Exports

16

7. Detailed Lower level Component Design

7.1 QuickLookComponent

7.1.1 Classification
The kind of component, such as a subsystem, class, package, function, file, etc.

7.1.2 Processing Narrative (PSPEC)
A process specification (PSPEC) can be used to specify the processing details

7.1.3 Interface Description

7.1.4 Processing Detail

7.1.4.1 Design Class Hierarchy
Class inheritance: parent or child classes.

7.1.4.2 Restrictions/Limitations

7.1.4.3 Performance Issues

7.1.4.4 Design Constraints

7.1.4.5 Processing Detail For Each Operation
7.1 Detail.js

7.1.1 Classification
The kind of component, such as a subsystem, class, package, function, file, etc.

7.1.2 Processing Narrative (PSPEC)
A process specification (PSPEC) can be used to specify the processing details

7.1.3 Interface Description

7.1.4 Processing Detail

7.1.4.1 Design Class Hierarchy
Class inheritance: parent or child classes.

7.1.4.2 Restrictions/Limitations

7.1.4.3 Performance Issues

17

7.1.4.4 Design Constraints

7.1.4.5 Processing Detail For Each Operation
7.1 ContactQuickLook.js

7.1.1 Classification

7.1.2 Processing Narrative (PSPEC)
7.1.3 Interface Description
7.1.4 Processing Detail
7.1.4.1 Design Class Hierarchy
7.1.4.2 Restrictions/Limitations
7.1.4.3 Performance Issues
7.1.4.4 Design Constraints
7.1.4.5 Processing Detail For Each Operation

18

8. Database Design

We use Cloud Firebase as our database for this project. The mobile app for Want 2 Remember
also uses Firebase, allowing for compatibility. Cloud Firebase is a document-based database
hosted by Google. The documents are stored in collections, which are then used to organize the
data and make queries. We organize our data into two collections: publicUsersInfo and users.
The publicUsersInfo collection stores data such as the UUID to match the ID to the user. The
user's collection stores more information about the user, including private user data

9. User Interface

9.1 Overview of User Interface
The user functionality of want2remember is designed to be intuitive, accessible, and
customizable across both platforms (web & mobile). Users can seamlessly create memories,
manage contacts, and personalize their experience. Clear and concise feedback ensures that users
are informed about the success of their actions and alerted to any issues that may arise during
interaction with the system. The combination of local and cloud storage ensures continuous
access to memories, providing a reliable and user-friendly experience.

9.2 Screen Frameworks or Images

19

20

21

9.3 User Interface Flow Model
A discussion of screen objects and actions associated with those objects. This should include a
flow diagram of the navigation between different pages.

Currently, the user is able to navigate through the:
● Login
● Sign Up
● Main Index Page
● QuickLook UI (Soon to be user interactive)
● Profile Modal
● SideBar Menu
● Create Memory
● Memory Templates
● Help
● Settings
● Contacts
● Care
● Filters
● Smaller components within a memory creation

22

10. Requirements Validation and Verification
10.1 Home Screen
10.1.1 The system shall display created memories on the home screen

10.1.2 The system shall display memories within a category selected by the user (Filter
by category)

10.1.3 The system shall display memories within a type selected by the user (Filter by
memory type)

10.1.4 The system shall display memories within a time frame selected by the user
(Filter by time/date)

10.1.5 The system shall allow the user to create a new memory

10.1.6 The system shall allow the user to select a memory to view

10.2 Create Screen
10.2.1 The system shall allow the user to select from premade memory templates

10.2.2 The system shall allow the user to give memories a title

10.2.3 The system shall allow the user to select a category for a memory

10.2.4 The system shall allow the user to create a PIN for secured memories if not
already created

10.2.5 The system shall allow the user to select a date for a memory

10.2.6 The system shall allow the user to select a time for a memory

10.2.7 The system shall allow the user to select a reminder time for a memory

10.2.8 The system shall allow the user to select a status for a memory

10.2.9 The system shall allow the user to enter tags for a memory

10.2.10 The system shall allow the user to enter a location for a memory

10.2.11 The system shall allow the user to select people for a memory

10.2.12 The system shall allow the user to add a custom field to a memory

10.2.13 The system shall allow the user to enter a title to a custom field

10.2.14 The system shall allow the user to enter content to a custom field

23

10.3 Edit Screen
10.3.1 The system shall allow the user to edit a memory

10.3.2 The system shall allow the user to delete a memory

10.4 More Details Screen
10.4.1 The system shall allow the user to view the details of a screen

10.5 Contacts Screen
10.5.1 The system shall display contact quick looks

10.5.2 The system shall display associated memories

10.5.3 The system shall allow the user to call a contact

10.5.4 The system shall allow the user to text a contact

10.5.5 The system shall allow the user to email a contact

10.5.6 The system shall allow the user to search for a contact

10.5.7 The system shall allow the user to update contacts

10.6 Search Screen
10.6.1 The system shall allow the user to search through the database with the search

bar.

10.6.2 The system shall display scrollable results below the search bar

10.7 Settings Screen
10.7.1 The system shall allow the user the ability to import/export JSON format

memories.

10.7.2 The system shall allow the user to create and reset their secured PIN.

10.7.3 The system shall allow the user to send feedback.

10.8 Backend
10.8.1 The system shall allow synchronization between caregiver and care receiver

data

10.8.2 The system shall encrypt user data

24

11. Glossary
● CEO = Chief Executive Officer
● Liason = a person who establishes and maintains communication for mutual

understanding and cooperation
● CSULA = California State University of Los Angeles
● HTML = Hypertext Markup Language
● UI = User Interface
● VS = Visual Studio
● CSS = Cascading Style Sheet

12. References
Brad Appleton <brad@bradapp.net> http://www.bradapp.net

https://www.cs.purdue.edu/homes/cs307/ExampleDocs/DesignTemplate_Fall08.doc

Title: React - The Complete Guide (incl Hooks, React Router, Redux) Authors: Academind by
Maximilian Schwarzmüller, Maximilian Schwarzmüller Date: (First Accessed) August 31, 2022
https://www.udemy.com/course/react-the-complete-guide-incl-redux

25

http://www.bradapp.net
https://www.cs.purdue.edu/homes/cs307/ExampleDocs/DesignTemplate_Fall08.doc

