








Software Design
Document
for
Behavioral Cognition Project

Version 2.0 approved

Prepared by Deep Bhakta, Yizhang Cao, Iris Ha, Erick Agustin Herrera, Shant Hovagimian, Daniel Ontiveros, Jorge Pena, Arturo Rodriguez, David Santini, Izeth Torres

Behavioral Cognition

September 22, 2023

[bookmark: _gjdgxs]
Table of Contents
Table of Contents...................................................................................................................	<pg 2>
Revision History.....................................................................................................................	<pg 4>
1. Introduction................................................................................................................	<pg 5>
1.1. Purpose...........................................................................................................	<pg 5>	
1.2. Document Conventions…………………….................................................	<pg 5>
1.3. Intended Audience and Reading Suggestions................................................	<pg 5>
1.4. System Overview...........................................................................................	<pg 5>
2. Design Considerations...............................................................................................	<pg 6>
2.1. Assumptions and dependencies.....................................................................	<pg 6>
2.2. General Constraints........................................................................................<pg 6>
2.3. Goals and Guidelines.....................................................................................<pg 6>
2.4. Development Methods...................................................................................	<pg 7>
3. Architectural Strategies..............................................................................................	<pg 7>
4. System Architecture...................................................................................................	<pg 7>
5. Policies and Tactics....................................................................................................	<pg 8>
5.1. Specific Products Used..................................................................................	<pg 8>
5.2. Requirements traceability...............................................................................	<pg 8>
5.3. Testing the software.......................................................................................	<pg 9>
6. Detailed System Design.............................................................................................	<pg 9>
6.x        Name of Module...........................................................................................	<pg 9>
6.x.1      Responsibilities......................................................................................	<pg 9>
6.x.2      Constraints.............................................................................................	<pg 9>
6.x.3      Composition...........................................................................................	<pg 9>
6.x.4      Uses/Interactions....................................................................................	<pg 9>
6.x.5      Resources...............................................................................................	<pg 9>
6.x.6      Interface/Exports....................................................................................	<pg 9>
7. Detailed Lower level Component Design
7.x      Name of Class or File.........................................................................	<pg 10>
7.x.1      Classification....................................................................................	<pg 10>
7.x.2      Processing Narrative(PSPEC)..........................................................	<pg 10>
7.x.3      Interface Description........................................................................	<pg 10>
7.x.4     Processing Detail..............................................................................	<pg 10>
7.x.4.1    Design Class Hierarchy...................................................................	<pg 10>
7.x.4.2    Restrictions/Limitations..................................................................	<pg 10>
7.x.4.3     Performance Issues........................................................................	<pg 10>
7.x.4.4     Design Constraints.........................................................................	<pg 10>
7.x.4.5     Processing Detail For Each Operation...........................................	<pg 10>

8. User Interface
8.1. Overview of User Interface..............................................................	<pg 11>
8.2. Screen Frameworks or Images.........................................................	<pg 11>
8.3. User Interface Flow Model...............................................................	<pg 11>
9. Database Design
	9.1	Overview of User Interface………………………………………….…… <pg 11>
	9.2	Screen Frameworks or Images…………………………………………… <pg 11>
	9.3	User Interface Flow Model………………………………………………. <pg 12>
10. Requirements Validation and Verification.....................................................	<pg 12>
11. Glossary..........................................................................................................	<pg 13>
12. References......................................................................................................	<pg 14>


Revision History

	Name
	Date
	Reason For Changes
	Version

	 Iris Ha
	 12/5/23
	 Starting Documentation
	 1.0

	Yizhang Cao
	5/1/2024
	Revising Documentation
	2.0

	 
	 
	 
	 

	
	
	
	


 


1. Introduction

1.1 Purpose	Comment by Iris ha: Identify the product whose software requirements are specified in this document, including the revision or release number. Describe the scope of the product that is covered by this SRS, particularly if this SRS describes only part of the system or a single subsystem.
Software design document is for lp-toolkit version 1.0. Document will go over the thought process of developing lp-toolkit and the architecture.

1.2 Document Conventions
	Comment by Iris ha: Describe any standards or typographical conventions that were followed when writing this SRS, such as fonts or highlighting that have special significance. For example, state whether priorities for higher-level requirements are assumed to be inherited by detailed requirements, or whether every requirement statement is to have its own priority.
· [bookmark: _30j0zll]Coding Standards: We adhere to the PEP 8 standards for Python, which ensures readability and uniformity across our Python codebase. JavaScript code follows Airbnb's style guide, a widely adopted set of rules that promotes code clarity and bug prevention.
· [bookmark: _30j0zll]Documentation Standards: All technical documentation is written in Markdown format. This choice supports easy editing, version control compatibility, and straightforward conversion to other formats like HTML or PDF.
· [bookmark: _30j0zll]Diagram Conventions: We use Unified Modeling Language (UML) diagrams for architectural and system flow visualizations. Sequence diagrams are employed to illustrate the interaction between system components over time, providing a clear, step-by-step representation of the processes.
1.3 Intended Audience and Reading Suggestions	Comment by Iris ha: Describe the different types of reader that the document is intended for, such as developers, project managers, marketing staff, users, testers, and documentation writers. Describe what the rest of this SRS contains and how it is organized. Suggest a sequence for reading the document, beginning with the overview sections and proceeding through the sections that are most pertinent to each reader type.
[bookmark: _tjnkcg25gl16]Document’s audience is for developers, users and testers for this software. This document will give a more detailed overview of the project, giving information about its goal, overall architecture and technical information.

1.4 System Overview	Comment by Iris ha: Provide a general description of the software system including its functionality and matters related to the overall system and its design (perhaps including a discussion of the basic design approach or organization
There is a frontend, backend, huggingface and langchain containers. Frontend displays a chat box on the browser as the user interface. Backend connects to the frontend, MongoDB, and langchain. The langchain container will have the vectorizer, langchain and other mirco-services. Huggingface container is an LLM implemented.


2. Design Considerations	Comment by Iris ha: This section describes many of the issues which need to be addressed or resolved before attempting to devise a complete design solution.

2.1 Assumptions and Dependencies	Comment by Iris ha: Describe any assumptions or dependencies regarding the software and its use. These may concern such issues as:

Related software or hardware
Operating systems
End-user characteristics
Possible and/or probable changes in functionality
lp-toolkit can be used based on the assumption that the user has docker installed to execute the program in one command in the terminal/command line.They will have their own api keys from the 2 implemented models.
2.2 General Constraints	Comment by Iris ha: Describe any global limitations or constraints that have a significant impact on the design of the system's software (and describe the associated impact). Such constraints may be imposed by any of the following (the list is not exhaustive):

Hardware or software environment
End-user environment
Availability or volatility of resources
Standards compliance
Interoperability requirements
Interface/protocol requirements
Data repository and distribution requirements
Security requirements (or other such regulations)
Memory and other capacity limitations
Performance requirements
Network communications
Verification and validation requirements (testing)
Other means of addressing quality goals
Other requirements described in the requirements specification
You will not need to include all of these. Only the ones that will influence the design of your software
The system must operate efficiently under the load of up to 10,000 concurrent users.
The interface must be compatible with major browsers like Chrome, Firefox, and Edge.

2.3 Goals and Guidelines	Comment by Iris ha: Describe any goals, guidelines, principles, or priorities which dominate or embody the design of the system's software. For each such goal or guideline, unless it is implicitly obvious, describe the reason for its desirability. Feel free to state and describe each goal in its own subsubsection if you wish. Such goals might be:

The KISS principle ("Keep it simple stupid!")
The Software has a mandatory delivery date that must be met (end of the cd3337 class)
Emphasis on speed versus memory use
The product should work, look, or "feel" like an existing product

lp-toolkit's overarching ambition is to embody accessibility, expedited learning curves, and comprehensive inclusivity—focusing on being effortlessly navigable, swiftly adoptable, and encompassing all necessary components for users. Striving to be user-friendly, it aims to minimize complexities, ensuring a seamless onboarding experience. Embracing the "batteries included" ethos, it aspires to offer a holistic package, minimizing external dependencies, and empowering users with the necessary tools and resources readily available within the toolkit environment.
[bookmark: _duwotkq5qdni]Batteries included
Any LLM(langchain, llama, openAI, etc.) can be used by using a simple API call. This allows users to easily use the software with minimal LLM knowledge.
2.4 Development Methods	Comment by Iris ha: Briefly describe the method or approach used for this software design. If one or more formal/published methods were adopted or adapted, then include a reference to a more detailed description of these methods. If several methods were seriously considered, then each such method should be mentioned, along with a brief explanation of why all or part of it was used or not used.
These would be things such as the ‘Water Fall Development’ methods, ‘Agile Development’, ‘Unplanned Mad Scramble Development’, or other development models and variations. Describe how these were applied in the case of your project.
Dynamic development in a research project signifies an iterative and adaptable approach, embracing flexibility and evolution as foundational principles. It involves an agile methodology, allowing for continuous refinement, exploration, and adaptation of project components as new insights, technologies, or findings emerge. This approach enables the project to respond swiftly to changing requirements, novel discoveries, or user feedback, fostering innovation and ensuring that the project stays at the forefront of advancements in its field.
2.5 System Overview
Technology Stack Details: The project leverages Docker to encapsulate different parts of our application in containers, promoting both isolation and portability. The backend, written in Python, makes use of frameworks like Flask to handle requests, whereas the frontend relies on React, providing a dynamic user experience.
Component Interaction: There's a strong interface between frontend, backend, and LangChain microservices through well-defined RESTful APIs. These APIs facilitate data exchanges and process synchronization across containers, ensuring that the frontend dynamically reflects the system's backend logic.

3. Architectural Strategies	Comment by Iris ha: Describe any design decisions and/or strategies that affect the overall organization of the system and its higher-level structures. These strategies should provide insight into the key abstractions and mechanisms used in the system architecture. Describe the reasoning employed for each decision and/or strategy (possibly referring to previously stated design goals and principles) and how any design goals or priorities were balanced or traded-off. Such decisions might concern (but are not limited to) things like the following:

Use of a particular type of product (programming language, database, library, etc. ...)
Reuse of existing software components to implement various parts/features of the system
Future plans for extending or enhancing the software
User interface paradigms (or system input and output models)
Hardware and/or software interface paradigms
Error detection and recovery
Memory management policies
External databases and/or data storage management and persistence
Distributed data or control over a network
Generalized approaches to control
Concurrency and synchronization
Communication mechanisms
Management of other resources
Each significant strategy employed should probably be discussed in its own subsection. Make sure that when describing a design decision that you also discuss any other significant alternatives that were considered, and your reasons for rejecting them (as well as your reasons for accepting the alternative you finally chose).
Docker is used to separate the frontend, backend, and langchain onto their own containers. This allows the use of JavaScript for the front and backend while using python in langchain. MongoDB is used for its noSQL database which makes the data flexible and easy to work with and allows for scalability.
4. System Architecture	Comment by Iris ha: This section should provide a high-level overview of how the functionality and responsibilities of the system were partitioned and then assigned to subsystems or components. Don't go into too much detail about the individual components themselves (there is a subsequent section for detailed component descriptions). The main purpose here is to gain a general understanding of how and why the system was decomposed, and how the individual parts work together to provide the desired functionality.
Level 0 DFD
This is where the level 0 DFD will probably work best.
At the top-most level, describe the major responsibilities that the software must undertake and the various roles that the system (or portions of the system) must play. Describe how the system was broken down into its modules/components/subsystems (identifying each top-level modules/component/subsystem and the roles/responsibilities assigned to it). Each subsection (i.e. “4.1.3 The ABC Module”) of this section will refer to or contain a detailed description of a system software component.
Level 1 Data Flow Diagrams (DFD) and Control Flow Diagrams (CFD) should probably go here
Level 1 Data Flow Diagrams (DFD) and Control Flow Diagrams (CFD) should probably go here.
Describe how the higher-level components collaborate with each other in order to achieve the required results. Don't forget to provide some sort of rationale for choosing this particular decomposition of the system (perhaps discussing other proposed decompositions and why they were rejected). Feel free to make use of design patterns, either in describing parts of the architecture (in pattern format), or for referring to elements of the architecture that employ them. Diagrams that describe a particular component or subsystem in detail should be included within the particular subsection that describes that component or subsystem.
When the user inputs a query into the chat box, it is sent over from the cloud to a proxy which directs it to the frontend, backend, or langchain. The frontend is what the user sees in their browser and it is written in html, CSS, and JavaScript. The backend is connected to the frontend, MongoDB, and connects to langchain through an API call. The langchain container has the vectorizer and langchain. The vectorizer rates user queries on a scale of 0-1 based on the importance of the word; it converts text into a numerical representation. Langchain digests information and returns generative text.

[image: ]

Additional Detail: The system architecture involves three main components: Frontend, Backend, and LangChain. Each of these components runs in its own Docker container to ensure scalability and isolation of processes. The Frontend utilizes React for dynamic user interface elements, communicating with the Backend via RESTful APIs. The Backend, developed in Node.js, handles business logic, interacts with MongoDB for data persistence, and manages communication with the LangChain component for processing natural language queries.

5. Policies and Tactics	Comment by Iris ha: Describe any design policies and/or tactics that do not have sweeping architectural implications (meaning they would not significantly affect the overall organization of the system and its high-level structures), but which nonetheless affect the details of the interface and/or implementation of various aspects of the system. Make sure that when describing a design decision that you also discuss any other significant alternatives that were considered, and your reasons for rejecting them (as well as your reasons for accepting the alternative you finally chose). Such decisions might concern (but are not limited to) things like the following (Must include 5.1, 5.2, and 5.3. The rest of these categories or custom ones can be added as needed.):

5.1 Choice of which specific products used	Comment by Iris ha: (IDE, compiler, interpreter, database, library, etc. ...)
Visual Studio Code. MongoDB. Docker. JavaScript. LangChain. Tailwind.

5.2 Plans for ensuring requirements traceability
Docker is essential for our container management, providing an isolated environment for each part of our application. Visual Studio Code is recommended for development due to its robust support for both Python and JavaScript. MongoDB is chosen for its schema-less nature, which offers flexibility in handling the unstructured data that is typical in natural language processing. LangChain is utilized for its advanced capabilities in processing and generating language-based data.
	
5.3 Plans for testing the software	Comment by Iris ha: 5.# Engineering trade-offs
…Describe…

5.# Coding guidelines and conventions
…Describe…

5.# The protocol of one or more subsystems, modules, or subroutines
…Describe…

5.# The choice of a particular algorithm or programming idiom (or design pattern) to implement portions of the system's functionality
…Describe…

5.# Plans for maintaining the software
…Describe…

5.# Interfaces for end-users, software, hardware, and communications
…Describe…

5.# Hierarchical organization of the source code into its physical components (files and directories).
…Describe…

5.# How to build and/or generate the system's deliverables (how to compile, link, load, etc.)
…Describe…

5.# Describe tactics such as abstracting out a generic DatabaseInterface class, so that changing the database from MySQL to Oracle or PostGreSQL is simply a matter of rewriting the DatabaseInterface class.

For this particular section, it may become difficult to decide whether a particular policy or set of tactics should be discussed in this section, or in the System Architecture section, or in the Detailed System Design section for the appropriate component. You will have to use your own "best" judgement to decide this. There will usually be some global policies and tactics that should be discussed here, but decisions about interfaces, algorithms, and/or data structures might be more appropriately discussed in the same (sub) section as its corresponding software component in one of these other sections.
	Using Jest to unit test critical functions and modules. Playwright for end-to-end testing to ensure user facing functions are working. CD/CI to automatically test and push the repository,pull requests,etc..

6. Detailed System Design	Comment by Iris ha: Most components described in the System Architecture section will require a more detailed discussion. Each subsection of this section will refer to or contain a detailed description of a system software component. The discussion provided should cover the following software component attributes: This is where Level 2 (or lower) DFD’s will go. If there are any additional detailed component diagrams, models, user flow diagrams or flowcharts they may be included here.

6.x  Name of Component (Module)
6.x.1	Responsibilities 
This module processes natural language inputs, leveraging advanced algorithms to understand and generate human-like responses.	Comment by Iris ha: The primary responsibilities and/or behavior of this component. What does this component accomplish? What roles does it play? What kinds of services does it provide to its clients? For some components, this may need to refer back to the requirements specification.
6.x.2	Constraints	Comment by Iris ha: Any relevant assumptions, limitations, or constraints for this component. This should include constraints on timing, storage, or component state, and might include rules for interacting with this component (encompassing preconditions, post conditions, invariants, other constraints on input or output values and local or global values, data formats and data access, synchronization, exceptions, etc.)
The module's performance and scalability are heavily dependent on the responsiveness of LangChain's external APIs and the computational resources available.
6.x.3	Composition	Comment by Iris ha: A description of the use and meaning of the subcomponents that are a part of this component.
It integrates several smaller services that handle specific aspects of language understanding and response generation.
6.x.4	Uses/Interactions	Comment by Iris ha: A description of this components collaborations with other components. What other components is this entity used by? What other components does this entity use (this would include any side-effects this entity might have on other parts of the system)? This concerns the method of interaction as well as the interaction itself. Object-oriented designs should include a description of any known or anticipated subclasses, superclass’s, and metaclasses.
It serves as a bridge between the user's queries and the data processing backends, ensuring that responses are accurate and timely.
6.x.5	Resources	Comment by Iris ha: A description of any and all resources that are managed, affected, or needed by this entity. Resources are entities external to the design such as memory, processors, printers, databases, or a software library. This should include a discussion of any possible race conditions and/or deadlock situations, and how they might be resolved.
Requires high network bandwidth and CPU allocation to manage the data-intensive tasks efficiently.
6.x.6	Interface/Exports	Comment by Iris ha: The set of services (classes, resources, data, types, constants, subroutines, and exceptions) that are provided by this component. The precise definition or declaration of each such element should be present, along with comments or annotations describing the meanings of values, parameters, etc. For each service element described, include (or provide a reference) in its discussion a description of its important software component attributes (Classification, Definition, Responsibilities, Constraints, Composition, Uses, Resources, Processing, and Interface).

Much of the information that appears in this section is not necessarily expected to be kept separate from the source code. In fact, much of the information can be gleaned from the source itself (especially if it is adequately commented). This section should not copy or reproduce information that can be easily obtained from reading the source code (this would be an unwanted and unnecessary duplication of effort and would be very difficult to keep up-to-date). It is recommended that most of this information be contained in the source (with appropriate comments for each component, subsystem, module, and subroutine). Hence, it is expected that this section will largely consist of references to or excerpts of annotated diagrams and source code.
Provides several API endpoints that facilitate the interaction with frontend applications and other back-end modules.

7. Detailed Lower level Component Design	Comment by Iris ha: Other lower-level Classes, components, subcomponents, and assorted support files are to be described here. You should cover the reason that each class exists (i.e. its role in its package; for complex cases, refer to a detailed component view.) Use numbered subsections below (i.e. “7.1.3 The ABC Package”.) Note that there isn't necessarily a one-to-one correspondence between packages and components.

7.x  Name of Class or File

7.x.1  Classification	Comment by Iris ha: The kind of component, such as a subsystem, class, package, function, file, etc.
	Serves as the central controller that manages request routing and error handling.

7.x.2  Processing Narrative (PSPEC)	Comment by Iris ha: A process specification (PSPEC) can be used to specify the processing details
Upon receiving a request, this class determines the appropriate service or handler based on the request type and content.

7.x.3  Interface Description

Exposes RESTful API endpoints for user interaction, acting as the entry point for the application.

7.x.4  Processing Detail

Implements robust error handling to manage exceptions and provide meaningful error messages to the end-users.

7.x.4.1 Design Class Hierarchy	Comment by Iris ha: Class inheritance: parent or child classes.

Sits at the top of the backend service hierarchy, directing requests to the appropriate components.

7.x.4.2 Restrictions/Limitations

Designed to handle specific types of requests; cannot process unsupported or malformed requests.

7.x.4.3 Performance Issues

Optimizations are required to handle high volumes of simultaneous requests without degradation in response times.

7.x.4.4 Design Constraints

Must comply with strict security protocols to prevent unauthorized data access.

7.x.4.5 Processing Detail For Each Operation
	Each function within the class is documented with specific details on input, process, and output, ensuring clarity and maintainability.


8. Database Design

Database used is MongoDB; a NoSQL database that offers high flexibility and scalability. The following are details of the database design, including the structure of collections and documents, key fields, indexing strategies, and relationships between different data entities. This database design aims to support the project's current needs while allowing for flexibility and scalability as the project grows and evolves.

MongoDB is utilized for its schema-less structure, which provides flexibility in handling the diverse data types and structures encountered in language processing. The database schema includes collections such as Users, Sessions, and Queries. Indexing is implemented on frequently queried fields like username and session_id to enhance performance.

9. User Interface	Comment by Iris ha: The user interface is the application, from the point of view of the users. Do your classes and their interactions (the logical and process views) impose restrictions on the user interface? Would removing some of these restrictions improve the user interface? Use some form of user interface flow model to provide an overview of the UI steps and flows. Don't go into too much refinement. You should include screen shots or wireframe layouts of significant pages or dialog elements. Make sure to indicate which of the system level modules or components that each of these user interface elements is interacting with.


9.1  Overview of User Interface	Comment by Iris ha: Describe the functionality of the system from the user’s perspective. Explain how the user will be able to use your system to complete all the expected features and the feedback Information that will be displayed for the user. This is an overview of the UI and its use. The user manual will contain extensive detail about the actual use of the software.
The user will be able to see a chat interface with 2 of the implemented AI models to choose from. Once the user chooses one and enters a query the chosen model will answer the user’s query. By clicking on the AI at any time it will change to that model to respond.


9.2  Screen Frameworks or Images	Comment by Iris ha: These can be mockups or actual screenshots of the various UI screens and popups.
[image: ][image: ]


9.3  User Interface Flow Model	Comment by Iris ha: A discussion of screen objects and actions associated with those objects. This should include a flow diagram of the navigation between different pages.

A detailed description of the flow between different UI components, how users navigate from one part to another, including error handling and user feedback mechanisms.


10. Requirements Validation and Verification	Comment by Iris ha: Create a table that lists each of the requirements that were specified in the SRS document for this software. For each entry in the table list which of the Component Modules and if appropriate which UI elements and/or low level components satisfies that requirement. For each entry describe the method for testing that the requirement has been met.


Testing Strategy: A multi-tiered approach to testing includes unit tests for individual components using Jest, which ensures that each function performs as expected in isolation. Integration tests via Playwright assess the interactions between components, ensuring that they work together seamlessly. Continuous Integration and Deployment setups are configured to run these tests automatically upon code submissions to the repository, facilitating early detection of integration issues.




11.  Glossary	Comment by Iris ha: An ordered list of defined terms and concepts used throughout the document. Provide definitions for any relevant terms, acronyms, and abbreviations that are necessary to understand the SDD document. This information may be listed here or in a completely separate document. If the information is not directly listed in this section provide a note that specifies where the information can be found.
1. Agile Methodology
· Definition: A project management methodology that uses short development cycles called sprints to focus on continuous improvement in the development of a product or service.
2. Backend
· Definition: The server-side component of a software application or website, which handles the logic, database interactions, authentication, and server configuration.
3. CI/CD (Continuous Integration/Continuous Deployment)
· Definition: A method to frequently deliver apps to customers by introducing automation into the stages of app development. The main concepts attributed to CI/CD are continuous integration, continuous delivery, and continuous deployment.
4. Docker
· Definition: A software platform that allows developers to quickly deploy apps as portable, self-sufficient containers that can run on the cloud or on-premises.
5. Frontend
· Definition: The part of a website or software application that the user interacts with directly. It is typically built using technologies like HTML, CSS, and JavaScript.
6. Git
· Definition: A distributed version control system that lets multiple developers safely work on the same project without interfering with each other's changes.
7. JSON (JavaScript Object Notation)
· Definition: A lightweight data-interchange format that is easy for humans to read and write and for machines to parse and generate. JSON is often used for transmitting data in web applications between clients and servers.
8. Microservices Architecture
· Definition: An architectural style that structures an application as a collection of small autonomous services, modeled around a business domain.
9. REST (Representational State Transfer)
· Definition: An architectural style for distributed hypermedia systems, such as the World Wide Web, emphasizing scalability of component interactions, uniform interfaces, and a stateless communication protocol.
10. Webhook
· Definition: A method used by applications to provide other applications with real-time information. A webhook delivers data to other applications as it happens, meaning you get data immediately.

12. References	Comment by Iris ha: < List any other documents or Web addresses to which this SDD refers. These may include other SDD or SRS documents, user interface style guides, contracts, standards, system requirements specifications, use case documents, or a vision and scope document. Provide enough information so that the reader could access a copy of each reference, including title, author, version number, date, and source or location. >
1. Docker Documentation. (n.d.). Retrieved Month Day, Year, from https://docs.docker.com/
Official Docker documentation providing detailed guidelines on containerization concepts, setup instructions, and best practices for Docker files and commands.
2. MongoDB Manual. (n.d.). Retrieved Month Day, Year, from https://docs.mongodb.com/manual/
MongoDB’s official manual, including details on installation, configuration, and best practices for database design and performance tuning.
3. Node.js Documentation. (n.d.). Retrieved Month Day, Year, from https://nodejs.org/en/docs/
Documentation for Node.js, offering insights into its asynchronous programming model and various APIs supporting backend development.
4. Stack Overflow. (n.d.). Discussions on containerization with Docker. Retrieved Month Day, Year, from https://stackoverflow.com/questions/tagged/docker
A collection of community discussions and problem-solving related to the use of Docker in development environments, providing practical insights and troubleshooting tips.


image1.png
FRONTEND
BACKEND
LANGCHAIN
- []array of words
- stop words removal

- [{word, score}] score between 0,1
- return output DATA
INTEGRATION

TYPES OF DOCS

Micro servers
1. Proxy

2. Data injection

3. Vectorizer

Vectorizer
4. Matcher

5. Frontend admin
- Extractoer could be a library

EXTRACTION

FRONTEND ADMIN




image2.png
LP-Toolkit

OpenAl GPT Hugging Face

(% Hugging Face

Leverage Hugging Face
models for diverse Al tasks.

Use OpenAl's GPT models to
answer your gquestions.

2 Hi! What kind of Al model are you?

| am a conversational Al model designed to assist and communicate with users in natural language.
B | am trained using deep learning algorithms and constantly learning and improving through
interactions with users.

[ Type your message... ]





image3.png
Al Settings

Temperature

Token Limit

100





