

Software Requirements Specification

for

Behavioral Cognition Project

Version 2.1 approved

Prepared by
Arturo Rodriguez, Daniel Oniveros, David Santini
Deep Bhakta, Erick Herrera, Iris Ha, Izeth Torres,
Jorge Pena, Shant Hovagimian, Yizhang Cao

Behavioral Cognition

May 8, 2024
Table of Contents
Table of Contents...	pg 2
Revision History...	pg 3
 1. Introduction..	pg 4
 1.1. Purpose...	pg 4
 1.2. Intended Audience and Reading Suggestions..	pg 4
 1.3. Product Scope..	pg 4
 1.4. Definitions, Acronyms, and Abbreviations ..	pg 4
 1.5. References..	pg 4
 2. Overall Description..	pg 5
 2.1. System Analysis…...	pg 5
 2.2. Product Perspective...	pg 5
 2.3. Product Functions...	pg 6
 2.4. User Classes and Characteristics..	pg 6
 2.5. Operating Environment..	pg 6
 2.6. Design and Implementation Constraints..	pg 7
 2.7. User Documentation..	pg 7
 2.8. Assumptions and Dependencies..	pg 7
 2.9. Apportioning of Requirements..	pg 7
 3. External Interface Requirements...	pg 7
 3.1. User Interfaces...	pg 7
 3.2. Hardware Interfaces...	pg 8
 3.3. Software Interfaces..	pg 8
 3.4. Communications Interfaces...	pg 8
 4. Requirements Specification...	pg 8
 4.1. Functional Requirements...	pg 8
 4.2. External Interface Requirements...	pg 9
 4.3. Logical Database Requirements..	pg 9
 4.4. Design Constraints...	pg 9
 5. Other Nonfunctional Requirements...	pg 9
 5.1. Performance Requirements..	pg 9
 5.2. Safety Requirements..	pg 9
 5.3. Security Requirements...	pg 9
 5.4. Software Quality Attributes...	pg 9
 5.5. Business Rules...	pg 10
 6. Legal and Ethical Considerations.…..	pg 10
Appendix A: Glossary..	pg 11
Appendix B: Analysis Models...	pg 11

Revision History
	Name
	Date
	Reason For Changes
	Version

	Iris Ha
	12/4/23
	Starting documentation
	1.0

	Yizhang Cao
	5/1/2024
	Revising documentation
	2.0

	Erick Herrera
	5/1/2024
	Revising documentation
	2.1

	Iris Ha
	5/1/2024
	Revising documentation
	2.1

1. 	Introduction
California State University Los Angeles Computer science senior design project partnered with Behavioral Cognition to create a toolkit that makes creating language processing easier. The language processing tool kit (lp toolkit) is designed to be easy to use with minimal knowledge of website application and artificial intelligence(AI). Currently, lp toolkit is a chat box that can answer simple questions using langchain openAI.
1.1 	Purpose	Comment by Iris ha: Identify the purpose of this document and the product whose software requirements are specified in this document. Be sure to mention the version / revision / release number of the software and also mention if the document covers all aspects of the software or only a small part of the software. Do not iterate over the table of contents here. Give a general overview of what this document contains.
Behavioral Cognition documentation for the language processing toolkit(lp-toolkit) version 2.1. This document will go over the broad and overall architecture of the lp-toolkit software from the usage to restrictions.
1.2 	Intended Audience and Reading Suggestions	Comment by Iris ha: This section should mention what types of readers the document is intended for such as developers, project managers, marketing staff, users, testers, and documentation writers. Describe what this SRS contains and how it is organized. If each type of reader should interpret this document differently, give a suggested reading sequence for the document that is relevant to that particular reader type. Example: A tester might only be interested in the detailed requirements list, or the marketing staff may only be interested in the very high level descriptions of the project
This document is intended for developers and those interested in AI. For developers using lp-toolkit for personal use it is recommended to go through sections 1-5. For developers using it for business related purposes it is recommended to go through sections 1-6. For those interested in AI and intend to use lp-toolkit to build your own chatbot it is recommended to go through sections 2,3 and 4.
1.3 	Product Scope	Comment by Iris ha: In this section:
• Identify the software product(s) the be produced by name.
• Explain what the software will do. If necessary mention what the software will not do.
• Describe how the software will be used once released, include benefits of the software, objectives, goals, etc.
This section should give a high-level summary of the software. Do not list all of the requirements here.
lp-toolkit simplifies AI development for developers, allowing them to create their own AI solutions without needing comprehensive understanding of AI principles. The goal of lp-toolkit is to be a toolkit with batteries included; easy to grasp and deployable in a short time.
1.4 	Definitions, Acronyms, and Abbreviations	Comment by Iris ha: Provide definitions for any relevant terms, acronyms, and abbreviations that are necessary to understand the SRS document. This information may be listed here, in an appendix at the end of the document, or in a completely separate document. If the information is not directly listed in this section provide a note that specifies where the information can be found.
· LLM (Large Language Model)
· AI (Artificial Intelligence)
· language processing toolkit (lp-toolkit)
· API (application programming interface)
1.5 	References	Comment by Iris ha: This section should provide the following:

A complete list of all documents referenced in the SRS.
A complete list of any Web addresses referenced in the SRS.
For each reference mention the title, author, version number, date, and the source or location of the reference.
Generally you should provide enough information for each reference so the reader of the SRS can easily obtain copies of these references.
References may include items such as: user interface style guides, contracts, standards, other SRS documents, use case documents, supplemental documents that were researched while writing this SRS or while designing the software.
1. Docker Documentation. (n.d.). Retrieved Month Day, Year, from https://docs.docker.com/
Official Docker documentation providing detailed guidelines on containerization concepts, setup instructions, and best practices for Docker files and commands.
2. MongoDB Manual. (n.d.). Retrieved Month Day, Year, from https://docs.mongodb.com/manual/
MongoDB’s official manual, including details on installation, configuration, and best practices for database design and performance tuning.
3. Node.js Documentation. (n.d.). Retrieved Month Day, Year, from https://nodejs.org/en/docs/
Documentation for Node.js, offering insights into its asynchronous programming model and various APIs supporting backend development.
4. Stack Overflow. (n.d.). Discussions on containerization with Docker. Retrieved Month Day, Year, from https://stackoverflow.com/questions/tagged/docker
A collection of community discussions and problem-solving related to the use of Docker in development environments, providing practical insights and troubleshooting tips.

2. 	Overall Description	Comment by Iris ha: This section explains the general facts that affect the software and its requirements. You should not state any specific requirements in this section. Here you will provide a background for the actual list of requirements that will be defined in section 4. The point in this section, is to give a high level description of the requirements in plain English for the benefit of the customer / client.
Computer science senior design project partnering with Behavioral Cognition to make a toolkit that makes creating language processing easier. The language processing tool kit (lp toolkit) is made to be easy to use without needing the knowledge of how to build a web application and AI. At the current stage lp toolkit is a simple chat box that can answer simple questions using langchain openAI.

2.1 	System Analysis	Comment by Iris ha: This section should describe the overall problem the software is design to solve, and the general approach identified or selected to solve it. In particular, this section should:

Define and articulate the goals of the project.
Present an analysis which identifies all major technical hurdles associated with carrying the project through to completion.
Identify the solutions to overcome the technical hurdles.
lp-toolkit stands as a research-driven endeavor crafted specifically to cater to developers, offering a streamlined avenue to construct their personalized AI systems. Designed with a "batteries included" approach, it provides developers the flexibility to integrate any Language Model they prefer into their AI projects. This approach liberates developers from model constraints, enabling them to use the power of diverse Language Models to tailor AI solutions that precisely meet their unique requirements and objectives.
2.2 	Product Perspective	Comment by Iris ha: This section should show how the software may relate to other products. If the software is completely independent of any other products / systems, you should also mention that here.
If the SRS describes software that is a component of a larger system, this section should describe how the requirements of this software relate to the larger system. Be sure to mention and identify interfaces between the larger system and the software that this SRS defines. This section should also mention how the software in this SRS compares to similar systems currently on the market (if any exist). Mention similarities / differences / motivations for creating this software when compared to an existing product. If the software is a completely new innovation, be sure to mention that as well. You may provide a block diagram here showing the major components of the larger system, external interfaces, and how your software fits in with the larger system. This is NOT a design or architecture picture. It is simply here to provide a context for the reader to understand where your software fits with the larger system. Your software should be shown as a black box. Remember, it is the purpose of the Software Design Document to present the internal workings of your product.
lp-toolkit operates within a Docker environment, leveraging containerization for its build and execution processes, while the user interface is accessed through standard web browsers. Conceptually akin to platforms like ChatGPT and Google Bard, lp-toolkit aligns itself with these AI-driven tools in offering a user-friendly interface for specific tasks. In a similar vein, ChatClient stands as another product in the realm of lp-toolkit's objectives, providing an online platform where users can construct personalized AI chatbots, reflecting a shared goal of empowering users in harnessing AI capabilities for their needs.
2.3 	Product Functions	Comment by Iris ha: This section provides a summary of the major functions that the software will perform. The functions should be organized in a way that makes them understandable to the customer / client or anyone who is reading this document. You can provide a bullet list summary of each function and / or provide simple diagrams to show the different functions and their relationships. Again, these diagrams do not show the design of the product, just the relationships between the functions. Again, describe what the functions of the system need to do, not how you are going to implement them.
Users can choose between two models currently implemented; ChatGPT and Huggingface. After choosing one of the two models the user can enter a query through the chat box and receive a response to the query. The selected model will answer the query using AI.
The project should be able to use other LLM and users should be able to use it via the frontend in the same manner as stated previously.
2.4 	User Classes and Characteristics	Comment by Iris ha: Identify the various user classes that you anticipate will use this product. User classes may be differentiated based on frequency of use, subset of product functions used, technical expertise, security or privilege levels, educational level, or experience. Describe the pertinent characteristics of each user class. Certain requirements may pertain only to certain user classes. Distinguish the most important user classes for this product from those who are less important.
In the lp-toolkit ecosystem, two distinct user levels define the access and functionalities available: regular users and admin users. Regular users are granted access to the browser-based chat user interface, providing them with the primary interaction platform for utilizing the toolkit's features. This interface offers a streamlined experience tailored to meet the specific needs and tasks of regular users, facilitating their engagement with the toolkit's functionalities.
In contrast, admin users enjoy elevated access privileges that encompass not only the regular user interface but also an additional admin user interface web page. This expanded access gives admin users enhanced functionalities, allowing them to oversee and manage various aspects of the toolkit. Through the admin interface, they gain control over administrative tasks, such as user management, system configurations, and potentially additional tools or settings exclusive to administrative roles.
By differentiating between regular and admin users, the lp-toolkit ensures a tailored experience for each user level, catering to their respective needs and responsibilities within the toolkit's environment. This hierarchical structure aims to optimize usability while providing necessary controls and capabilities to effectively manage the toolkit's operations.
2.5	Operating Environment	Comment by Iris ha: Provide details on the environment in which the software will live. This should include the hardware platform, operating system, and any other software components or applications that will affect your software and which have to coexist with your software.
The lp-toolkit is a versatile web-based tool designed for seamless execution via standard web browsers. It harnesses the power of Docker, offering a robust environment for users to optimize workflows and streamline processes. While Docker isn't mandatory for lp-toolkit, its utilization is highly recommended to ensure optimal performance and compatibility across diverse systems. Users engage with the toolkit through simple yet powerful commands executed within their command line or terminal environment. These commands encompass building and running lp-toolkit, providing users with the flexibility and control to navigate the system effortlessly.
By leveraging Docker, lp-toolkit simplifies deployment while maintaining consistency across various platforms. This approach not only ensures a consistent operational environment but also simplifies the deployment process across different systems. By prioritizing accessibility and ease of use, lp-toolkit enables users, regardless of their technical expertise, to seamlessly integrate the toolkit into their workflows. This user-friendly approach fosters inclusivity, empowering a diverse range of users to benefit from lp-toolkit's resources and functionalities with minimal setup and maximum efficiency.
2.6 	Design and Implementation Constraints	Comment by Iris ha: Give a general description of any items that will influence the ability of the software developers to implement the product. These can include things such as:

Regulatory policies within the organization that may affect development the software.
Hardware limitations
Interfaces with other applications
Parallel operation
Higher-order language requirements
Reliability requirements
Safety and security considerations.
Memory Constraints
Be sure to list any constraints that will affect the software. Generally this is to give an overview of any non-functional requirements that will be detailed in a later section.
Current Implementation uses two LLM, ChatGPT and Hugging face. ChaptGPT will require an API key. Tools required for general implementation are npm, docker and docker-compose.
2.7 	User Documentation	Comment by Iris ha: List any user documentation (user manuals, online guides, tutorials, etc) that will be delivered along with the software. Specify in what format each document will given.
Instructions for building and running lp-toolkit will be provided in the README.md files in the main directory. Build and run instructions for sub directories(frontend, backend, langchain, etc.) are also provided in README.md file in respective sub directories.
2.8 	Assumptions and Dependencies	Comment by Iris ha: List any other factors that may affect the requirements stated in this document. These are not design constraints (as mentioned above) but are factors that if changed will affect the requirements.
For example, you might assume that a specific operating system is available on the hardware allocated for this product. If this operating system were not available, then the SRS would have to be changed accordingly. List any third-party or commercial components that you plan to use. List any software component dependencies that you might want to reuse from another project. This section is a catch-all for anything that will affect your software design that did not fit into any of the previous sections. If anything will affect your requirements, mention it here.
The user will have already installed Docker to run the program in one command. Users should also have an API key when the LLM demands it.
2.9 	Apportioning of Requirements	Comment by Iris ha: List any requirements that might be delayed until future versions of the system.
A Vectorizer is to be implemented. A continuous chat log from switching between the implemented models should also be added.
3. 	External Interface Requirements	Comment by Iris ha: Again, this section is a high level description for the non-technical people who may be reading this document. Everything in this section is to detail how your software interacts with any external interfaces, whether these are other software or even hardware interfaces.
3.1 	User Interfaces	Comment by Iris ha: Describe the logical characteristics of each interface between the software product and the users. This may include sample screen images, any GUI standards or product family style guides that are to be followed, screen layout constraints, standard buttons and functions (e.g., help) that will appear on every screen, keyboard shortcuts, error message display standards, and so on. Define the software components for which a user interface is needed. Details of the user interface design should be documented in a separate user interface specification. Be sure to mention any requirements that must conform to the Americans with Disabilities Act.
At any point of the conversation, any of the implemented models can be used as the AI that carries out the tasks given. A button with a brief description of the AI should be implemented. Clicking this button switches the AI model.
Current user interaction is limited to asking a question via the textbox, viewing past questions and answers given(when implemented), and the buttons that switch AI models.
[image:]
3.2 	Hardware Interfaces	Comment by Iris ha: Describe the logical and physical characteristics of each interface between the software product and the hardware components of the system. This may include the supported device types, the nature of the data and control interactions between the software and the hardware, and communication protocols to be used. This is not a description of hardware requirements such as "This program will run on a PC with 16 gigabytes of RAM." This section details the actual hardware devices that your application will interact with. Items such as robotics components, lighting, audio / video equipment, etc. If your software does not have an hardware interface requirements, then state this instead.
This project does not interact with hardware interfaces; it is purely software.
3.3 	Software Interfaces	Comment by Iris ha: List any other software products and interfaces that your requirements must utilize. For each required product, list the name, version number, and source. Document any APIs that your software will have to access in order to interact with other software products. Also document how your software will communicate / pass information to the external software. Example, your customer uses MySQL version 1 and you are required to use that in your design, then you must specify this here. This section is NOT for specifying software that you think would be good to use. This is for customer-specific requirements that you HAVE to interact with.
HuggingFace, Langchain, FastAPI, ExpressJs, React, MongoDB 7.0, OpenAI, Docker
3.4 	Communications Interfaces
This program uses a browser to display the GUI which users can interact with. From executing the project the frontend is running on port 3000/tcp. The backend is running through port 5050/tcp and MongoDB is running through port 27017/tcp.	Comment by Iris ha: Describe the requirements associated with any communications functions required by this product, including e-mail, web browser, network server communications protocols, electronic forms, and so on. Define any pertinent message formatting. Identify any communication standards that will be used, such as FTP or HTTP. Specify any communication security or encryption issues, data transfer rates, and synchronization mechanisms.
4. 	Requirements Specification	Comment by Iris ha: This section contains all of the necessary software requirements with enough detail to allow designers to accurately design the software to satisfy those requirements, and to allow testers of the software to verify that all requirements have been satisfied. The requirements should include a description of every input to the system, every output, and all functions performed by the system in response to an input or output. The biggest thing to remember is that this section is for the software developers (technical people) while the previous sections were for the customers / non-technical people. Also remember that this is not HOW things will be implemented, but WHAT will be implemented. Requirements should be written according to the following:

Specific requirements should be correct, unambiguous, complete, consistent, ranked for importance and / or stability, verifiable, modifiable, and traceable.
Specific requirements should be cross-referenced to earlier documents that are relevant.
All requirements should be uniquely identifiable using a consistent numbering system, i.e. 1.1, 1.2, 1.1.2, and so on.
Requirements should be organized in a logical manner to provide the most readability.
Use the following format for each requirement:
The system shall... (this means this requirement is mandatory).
The system should... (this means a desired feature, but may be delayed until later).
This system may... (A optional, nice-to-have feature that might not be implemented).
Remember to number each requirement for traceability. Use a system such as 1.1, 1.1.1, 1.1.2.1, and so on. Each requirement need to be testable. Avoid statements that are general and vague such as "The system shall be easy to use." or "The system shall be developed using good software engineering practices."

Do not include examples. Remember that this is a specification and the designer should be able to read this and build the system without having to bother the customer again. Every minute detail must be documented here.

EVERYTHING in section 4 must be
4.1 	Functional Requirements	Comment by Iris ha: Functional requirements define the fundamental actions that must take place in the software in accepting and processing the inputs and in processing and generating the outputs. These are generally listed as “shall” statements starting with "The system shall…”

These include:

Validity checks on the inputs
Exact sequence of operations
Responses to abnormal situation, including
Overflow
Communication facilities
Error handling and recovery
Effect of parameters
Relationship of outputs to inputs, including
Input/Output sequences
Formulas for input to output conversion
It may be appropriate to partition the functional requirements into sub-functions or sub-processes. This does not imply that the software design will also be partitioned that way. This section should be as detailed as possible, again, listing WHAT your software is going to do, not HOW you are going to accomplish it.
The system must take requests through the proxy which routes the request to the frontend and backend. API calls are made to the backend while static assets, HTML, css and images are made to the frontend. Backend API calls to the database which then routes into data analytics and data modeling.
4.2 	External Interface Requirements	Comment by Iris ha: This contains a detailed description of all inputs into and outputs from the software system. It complements the interface descriptions in section 3 but does not repeat information there. Remember section 3 presents information oriented to the customer/user while section 4 is oriented to the developer.

It contains both content and format as follows:

Name of item
Description of purpose
Source of input or destination of output
Valid range, accuracy and/or tolerance
Units of measure
Timing
Relationships to other inputs/outputs
Screen formats/organization
Window formats/organization
Data formats
Command formats
End messages
User Input: Input given will be a question to be passed to the AI to answer. Users will type their question into the textbox and submit using the “Send” button.
AI model Input: Button that chooses which AI model to use to answer User Input.
Response Output: Output will be the response that the AI gives when given User Input.
4.3 	Logical Database Requirements	Comment by Iris ha: This section specifies the logical requirements for any information that is to be placed into a database.

This may include:

Types of information used by various functions
Frequency of use
Accessing capabilities
Data entities and their relationships
Integrity constraints
Data retention requirements
If the customer provided you with data models, those can be presented here. ER diagrams (or static class diagrams) can be useful here to show complex data relationships. Remember a diagram is worth a thousand words of confusing text.
When queries are sent to the backend, the MongoDB database will take data and send the corresponding data into the Data Analytics and into the Data Modeling.
4.4 	Design Constraints	Comment by Iris ha: Specify design constraints that can be imposed by other standards, hardware limitations, etc. This should be a more technical description of the overview given in section 2.5.
The system must operate efficiently under the load of up to 10,000 concurrent users.
The interface must be compatible with major browsers like Chrome, Firefox, and Edge. Should be able to easily implement other LLMs. A simple button press is all that is needed to switch LLM.
5. 	Other Nonfunctional Requirements
5.1 Performance Requirements	Comment by Iris ha: This section specifies any numerical / statistical requirements imposed on the software such as:

The number of terminals to be supported
The number of simultaneous users to be supported
Amount and type of information to be handled
Dynamic numerical requirements may include, for example, the numbers of transactions and tasks and the amount of data to be processed within certain time periods for both normal and peak workload conditions. All of these requirements should be stated in measurable terms. For example, "95% of the transactions shall be processed in less than 1 second" rather than, "An operator shall not have to wait for the transaction to complete."

(Note: Numerical limits applied to one specific functional requirement are normally specified as part of that requirement and should be listed in section 4. This part is more for performance / statistical requirements imposed on the entire system as a whole.)
All queries sent shall be processed depending on the LLM chosen. Should be able to handle 10,000 concurrent users. Information to be handled will be in the form of text.
5.2 	Safety Requirements	Comment by Iris ha: Specify those requirements that are concerned with possible loss, damage, or harm that could result from the use of the product. Define any safeguards or actions that must be taken, as well as actions that must be prevented. Refer to any external policies or regulations that state safety issues that affect the product’s design or use. Define any safety certifications that must be satisfied.
It is important to note that AI is not perfect as it can sometimes give faulty or even harmful information. A disclaimer should be made towards the user that the AI will not always be 100% correct and to not allow the chatbox to make big decisions(medical, law advice, etc.).
5.3 	Security Requirements	Comment by Iris ha: Specify any requirements regarding security or privacy issues surrounding use of the product or protection of the data used or created by the product. Define any user identity authentication requirements. Refer to any external policies or regulations containing security issues that affect the product. Define any security or privacy certifications that must be satisfied.
As this project runs locally on the user’s machine, there is no current need for user identity authentication.
5.4 	Software Quality Attributes	Comment by Iris ha: Specify any additional quality characteristics for the product that will be important to either the customers or the developers. Some to consider are: adaptability, availability, correctness, flexibility, interoperability, maintainability, portability, reliability, re-usability, robustness, test-ability, and usability. Write these to be specific, quantitative, and verifiable when possible. At the least, clarify the relative preferences for various attributes, such as ease of use over ease of learning.
Developers will be able to easily implement any LLM and make API calls to use them. Any LLM can be used and should work with this software. Installation of this software should be as seamless as possible as accessibility is key.
5.5 	Business Rules	Comment by Iris ha: List any operating principles about the product, such as which individuals or roles can perform which functions under specific circumstances. These are not functional requirements in themselves, but they may imply certain functional requirements to enforce the rules.
Users should be able to customize the AI by setting the temperature and/or setting the token limit. Other features offered by the chosen LLM should also be displayed and accessible to the user. Customization should be easily presented to the user whenever possible to create an AI that is catered specifically for the user.
6. 	Legal and Ethical Considerations	Comment by Iris ha: Discuss any legal and/or ethical issues involved in the project. Justify the decisions made based on legal and/or ethical principles.
As this project uses AI, it is possible that the AI gives unethical or dangerous advice, moreover the AI can be taught to give advice/instruction on how to do unethical/illegal activities. It is assumed that the user will use the software for reasonable uses.

Appendix A: Glossary	Comment by Iris ha: Define all the terms necessary to properly interpret the SRS, including acronyms and abbreviations. You may wish to build a separate glossary that spans multiple projects or the entire organization, and just include terms specific to a single project in each SRS. If this section is very short you may include it in section 1.4. If your list is very long you may include it here and put a reference to this Appendix in section 1.4.
· LLM (Large Language Model)
· AI (Artificial Intelligence)
· language processing toolkit (lp-toolkit)
· API (application programming interface)
Appendix B: Analysis Models
[image:][image:]	Comment by Iris ha: Optionally, include any pertinent analysis models, such as data flow diagrams, class diagrams, state-transition diagrams, or entity-relationship diagrams.
	Comment by Iris ha: Collect a numbered list of the TBD (to be determined) references that remain in the SRS so they can be tracked to closure.

image1.png
LP-Toolkit

OpenAl GPT Hugging Face

(% Hugging Face

Leverage Hugging Face
models for diverse Al tasks.

Use OpenAl's GPT models to
answer your gquestions.

2 Hi! What kind of Al model are you?

| am a conversational Al model designed to assist and communicate with users in natural language.
B | am trained using deep learning algorithms and constantly learning and improving through
interactions with users.

[Type your message...]

image3.png
3000/tcp.

Proxy

27017/tcp

image2.png
FRONTEND
BACKEND
LANGCHAIN
- []array of words
- stop words removal

- [{word, score}] score between 0,1
- return output DATA
INTEGRATION

TYPES OF DOCS

Micro servers
1. Proxy

2. Data injection

3. Vectorizer

Vectorizer
4. Matcher

5. Frontend admin
- Extractoer could be a library

EXTRACTION

FRONTEND ADMIN

