
Software Design
Document

for

Digitization and Modernization of
PD HelpDesk Ticketing System

Version 1.0 approved

Prepared by Nshan Kazaryan, Marie Karibyan, Kevin Trochez, Mark Perez,
Brandon Estrada, Christian Armendariz, Haoi Nam Cao, Gilbert Hopkins,

Geovany Huerta

Santa Barbara Public Defenders Office / Deepak Budwani, Brent Modell, Luis
Ramirez

September 8, 2022

1

Table of Contents... pg 2
Revision History...pg 4

1. Introduction..pg #
1.1. Purpose...pg #
1.2. Document Conventions……………………... pg #
1.3. Intended Audience and Reading Suggestions.. pg #
1.4. System Overview... pg #

2. Design Considerations... pg #
2.1. Assumptions and dependencies... pg #
2.2. General Constraints..pg #
2.3. Goals and Guidelines...pg #
2.4. Development Methods... pg #

3. Architectural Strategies..pg #
4. System Architecture... pg #

4.1. ... pg #
4.2. ... pg #

5. Policies and Tactics..pg #
5.1. Specific Products Used.. pg #
5.2. Requirements traceability...pg #
5.3. Testing the software... pg #
5.4. Engineering trade-offs... pg #
5.5. Guidelines and conventions... pg #
5.6. Protocols.. pg #
5.7. Maintaining the software... pg #
5.8. Interfaces..pg #
5.9. System's deliverables... pg #

5.10. Abstraction...pg #
6. Detailed System Design...pg #

6.x Name of Module... pg #
6.x.1 Responsibilities..pg #
6.x.2 Constraints... pg #
6.x.3 Composition...pg #
6.x.4 Uses/Interactions..pg #
6.x.5 Resources... pg #
6.x.6 Interface/Exports..pg #

7. Detailed Lower level Component Design
7.x Name of Class or File... pg #

7.x.1 Classification..pg #
7.x.2 Processing Narrative(PSPEC)..pg #
7.x.3 Interface Description..pg #
7.x.4 Processing Detail.. pg #

7.x.4.1 Design Class Hierarchy...pg #
7.x.4.2 Restrictions/Limitations..pg #
7.x.4.3 Performance Issues.. pg #
7.x.4.4 Design Constraints...pg #
7.x.4.5 Processing Detail For Each Operation...pg #

2

8. User Interface
8.1. Overview of User Interface.. pg #
8.2. Screen Frameworks or Images... pg #
8.3. User Interface Flow Model...pg #

9. Database Design…………………………………………………………………….pg #
10. Requirements Validation and Verification... pg #
11. Glossary... pg #
12. References... pg #

3

Revision History

Name Date Reason For Changes Version

Initial Draft 9/08 Initial draft of document 1.0

Update Document 11/30 Filling in info for certain sections 1.1

4

1. Introduction
1.1 Purpose

The purpose of this document is to describe in full detail the way we designed our project,
PDHelpdesk. This document can act as a guide on how our application was implemented.

1.2 Document Conventions

All content is written in size 12 Times New Roman font. Important sections and words are in
bold. Every requirement statement has their own priority.

1.3 Intended Audience and Reading Suggestions

The intended audience is the staff members of Santa Barbara Public Defender's office. The
admin/tech role will be given to IT technicians of the department. The rest of the staff members
will be given the user role. If any user is interested in how this application was designed or is
having trouble navigating, you can read through this document for better understanding.

1.4 System Overview

Our system is a typical IT ticketing system that has many different features and capabilities
built-in using Microsoft’s PowerApps framework. It is a software intended for users to be able to
submit tickets for IT related issues, view their current tickets, view the knowledge base, and view
system based notifications such as outages. A technician on the other hand has all these
capabilities in addition to responding to tickets, assigning tags to tickets, closing out tickets,
sending system wide alerts, and assigning tickets to themselves or other technicians.The basic
design approach is similar to a lot of websites that have a frontend and backend database
connection. The API acts as the middle man between the frontend and backend. Essentially, the
API grabs the user requests/actions that happen in the frontend and updates the database with the
information the user provided. For example, if a user creates a ticket, then the tickets table is
updated with the respectable attributes.

5

2. Design Considerations
This section describes many of the issues which need to be addressed or resolved before
attempting to devise a complete design solution.

2.1 Assumptions and Dependencies

Technologies used for PD HelpDesk.

● PowerApps: This is a Microsoft framework part of the Power platform that allows
developers with little technical experience to build powerful web/mobile applications. It
also provides a rapid development environment to build custom apps for any business
needs.

● Microsoft Azure SQL: fully managed platform as a service database engine that handles
most of the database management functions such as upgrading, patching, backups, and
monitoring without any user involvement. Relational management system.

● Internet Browsers: Any browser such as Microsoft Edge, Google Chrome, Firefox, etc..
will work.

The app depends on the MS PowerApps environment and users must use the application through
PowerApps “play” feature.

2.2 General Constraints

● Users need a valid SBPD account with appropriate PowerApps licensing.
● Stable internet connection.
● Any browser can be used but PowerApps is needed to launch the application. PowerApps

mobile is needed for users that are using the app in a mobile environment.

2.3 Goals and Guidelines

The application should be fully completed and deployed by the end of spring semester 2023
(May 2023). The website also must be intuitive for the sole use by SBPD technicians and
attorneys/staff members. This product should fully be able to function in a mobile environment.
The product should work, look, or “feel” like ServiceNow, ZenDesk, etc.

2.4 Development Methods

We are using the Agile Development method. Agile is an iterative approach to project
management and software development that helps teams deliver value to their customers faster
and with fewer headaches. Instead of betting everything on a "big bang" launch, an agile team
delivers work in small, but consumable, increments. Every week, new tasks and assignments are

6

given to team members and the team has quick every few week deadlines. This iterative
approach allows us to determine where we are at on the project and allows us to handle issues as
they arise. The components/features of the web application have been divided up among the
group members to optimize time and efficiency.

7

3. Architectural Strategies
Describe any design decisions and/or strategies that affect the overall organization of the system
and its higher-level structures. These strategies should provide insight into the key abstractions
and mechanisms used in the system architecture. Describe the reasoning employed for each
decision and/or strategy (possibly referring to previously stated design goals and principles) and
how any design goals or priorities were balanced or traded-off. Such decisions might concern
(but are not limited to) things like the following:

● Use of a particular type of product (programming language, database, library, etc.
...)

● Reuse of existing software components to implement various parts/features of the
system

● Future plans for extending or enhancing the software

● User interface paradigms (or system input and output models)

● Hardware and/or software interface paradigms

● Error detection and recovery

● Memory management policies

● External databases and/or data storage management and persistence

● Distributed data or control over a network

● Generalized approaches to control

● Concurrency and synchronization

● Communication mechanisms

● Management of other resources

Each significant strategy employed should probably be discussed in its own subsection.
Make sure that when describing a design decision that you also discuss any other
significant alternatives that were considered, and your reasons for rejecting them (as well
as your reasons for accepting the alternative you finally chose).

8

4. System Architecture
This section should provide a high-level overview of how the functionality and responsibilities
of the system were partitioned and then assigned to subsystems or components. Don't go into too
much detail about the individual components themselves (there is a subsequent section for
detailed component descriptions). The main purpose here is to gain a general understanding of
how and why the system was decomposed, and how the individual parts work together to provide
the desired functionality.

This is where the level 0 DFD will probably work best.

At the top-most level, describe the major responsibilities that the software must undertake and
the various roles that the system (or portions of the system) must play. Describe how the system
was broken down into its modules/components/subsystems (identifying each top-level
modules/component/subsystem and the roles/responsibilities assigned to it).

Each subsection (i.e. “4.1.3 The ABC Module”) of this section will refer to or contain a detailed
description of a system software component.

9

Level 1 Data Flow Diagrams (DFD) and Control Flow Diagrams (CFD) should probably go
here.

Describe how the higher-level components collaborate with each other in order to achieve the
required results. Don't forget to provide some sort of rationale for choosing this particular
decomposition of the system (perhaps discussing other proposed decompositions and why they
were rejected). Feel free to make use of design patterns, either in describing parts of the
architecture (in pattern format), or for referring to elements of the architecture that employ them.
Diagrams that describe a particular component or subsystem in detail should be included within
the particular subsection that describes that component or subsystem.

10

5. Policies and Tactics
Describe any design policies and/or tactics that do not have sweeping architectural implications
(meaning they would not significantly affect the overall organization of the system and its
high-level structures), but which nonetheless affect the details of the interface and/or
implementation of various aspects of the system. Make sure that when describing a design
decision that you also discuss any other significant alternatives that were considered, and your
reasons for rejecting them (as well as your reasons for accepting the alternative you finally
chose). Such decisions might concern (but are not limited to) things like the following (Must
include 5.1, 5.2, and 5.3. The rest of these categories or custom ones can be added as needed.):

5.1 Choice of which specific products used
5.1.1 Microsoft Azure SQL

5.1.2 Microsoft Power Apps

5.1.3 Github

(IDE, compiler, interpreter, database, library, etc. ...)

5.2 Plans for ensuring requirements traceability
These

…Describe…

5.3 Plans for testing the software
For th

…Describe…

5.# Engineering trade-offs
…Describe…

5.# Coding guidelines and conventions

…Describe…

5.# The protocol of one or more subsystems, modules, or subroutines

…Describe…

5.# The choice of a particular algorithm or programming idiom (or design pattern) to implement
portions of the system's functionality

…Describe…

5.# Plans for maintaining the software

…Describe…

5.# Interfaces for end-users, software, hardware, and communications

11

…Describe…

5.# Hierarchical organization of the source code into its physical components (files and
directories).

…Describe…

5.# How to build and/or generate the system's deliverables (how to compile, link, load, etc.)

…Describe…

5.# Describe tactics such as abstracting out a generic DatabaseInterface class, so that changing
the database from MySQL to Oracle or PostGreSQL is simply a matter of rewriting the
DatabaseInterface class.

For this particular section, it may become difficult to decide whether a particular policy or set of
tactics should be discussed in this section, or in the System Architecture section, or in the
Detailed System Design section for the appropriate component. You will have to use your own
"best" judgement to decide this. There will usually be some global policies and tactics that
should be discussed here, but decisions about interfaces, algorithms, and/or data structures might
be more appropriately discussed in the same (sub) section as its corresponding software
component in one of these other sections.

12

6. Detailed System Design
Most components described in the System Architecture section will require a more detailed
discussion. Each subsection of this section will refer to or contain a detailed description of a
system software component. The discussion provided should cover the following software
component attributes:

This is where Level 2 (or lower) DFD’s will go. If there are any additional detailed component
diagrams, models, user flow diagrams or flowcharts they may be included here.

6.x Name of Component (Module)
6.x.1 Responsibilities

The primary responsibilities and/or behavior of this component. What does this
component accomplish? What roles does it play? What kinds of services does it provide
to its clients? For some components, this may need to refer back to the requirements
specification.

6.x.2 Constraints

Any relevant assumptions, limitations, or constraints for this component. This should
include constraints on timing, storage, or component state, and might include rules for
interacting with this component (encompassing preconditions, post conditions, invariants,
other constraints on input or output values and local or global values, data formats and
data access, synchronization, exceptions, etc.)

6.x.3 Composition

A description of the use and meaning of the subcomponents that are a part of this
component.

6.x.4 Uses/Interactions

A description of this components collaborations with other components. What other
components is this entity used by? What other components does this entity use (this
would include any side-effects this entity might have on other parts of the system)? This
concerns the method of interaction as well as the interaction itself. Object-oriented
designs should include a description of any known or anticipated subclasses, superclass’s,
and metaclasses.

6.x.5 Resources

A description of any and all resources that are managed, affected, or needed by this
entity. Resources are entities external to the design such as memory, processors, printers,

13

databases, or a software library. This should include a discussion of any possible race
conditions and/or deadlock situations, and how they might be resolved.

6.x.6 Interface/Exports

The set of services (classes, resources, data, types, constants, subroutines, and
exceptions) that are provided by this component. The precise definition or declaration of
each such element should be present, along with comments or annotations describing the
meanings of values, parameters, etc. For each service element described, include (or
provide a reference) in its discussion a description of its important software component
attributes (Classification, Definition, Responsibilities, Constraints, Composition, Uses,
Resources, Processing, and Interface).

Much of the information that appears in this section is not necessarily expected to be kept
separate from the source code. In fact, much of the information can be gleaned from the source
itself (especially if it is adequately commented). This section should not copy or reproduce
information that can be easily obtained from reading the source code (this would be an unwanted
and unnecessary duplication of effort and would be very difficult to keep up-to-date). It is
recommended that most of this information be contained in the source (with appropriate
comments for each component, subsystem, module, and subroutine). Hence, it is expected that
this section will largely consist of references to or excerpts of annotated diagrams and source
code.

14

7. Detailed Lower level Component Design
Other lower-level Classes, components, subcomponents, and assorted support files are to be
described here. You should cover the reason that each class exists (i.e. its role in its package; for
complex cases, refer to a detailed component view.) Use numbered subsections below (i.e.
“7.1.3 The ABC Package”.) Note that there isn't necessarily a one-to-one correspondence
between packages and components.

7.x Name of Class or File

7.x.1 Classification
The kind of component, such as a subsystem, class, package, function, file, etc.

7.x.2 Processing Narrative (PSPEC)
A process specification (PSPEC) can be used to specify the processing details

7.x.3 Interface Description

7.x.4 Processing Detail

7.x.4.1 Design Class Hierarchy
Class inheritance: parent or child classes.

7.x.4.2 Restrictions/Limitations

7.x.4.3 Performance Issues

7.x.4.4 Design Constraints

7.x.4.5 Processing Detail For Each Operation

15

8. Database Design

Include details about any databases used by the software. Include tables and descriptions.

This is our database schema. We started with the Tickets table since this is the most important
information we need to store in our database. We listed out all the details that a tickets record
should contain. By doing this we realized which entities need to be its own table to have a one to
many relationship with the Tickets table. There can be many Media, TicketCategory, and
Comments records for one Ticket. All tables have a unique identifier (id) and the date that record
was created. The Alerts table is to send mass notifications out to all users. It also has a
dateExpired to prevent the alert from always showing.

More details will be here next semester.

16

9. User Interface
The user interface is the application, from the point of view of the users. Do your classes and
their interactions (the logical and process views) impose restrictions on the user interface?
Would removing some of these restrictions improve the user interface? Use some form of user
interface flow model to provide an overview of the UI steps and flows. Don't go into too much
refinement. You should include screen shots or wireframe layouts of significant pages or dialog
elements. Make sure to indicate which of the system level modules or components that each of
these user interface elements is interacting with.

9.1 Overview of User Interface

Before the user gets to PD Helpdesk, they must be logged in using their Microsoft 365 Office
credentials. Once they have their credentials, the application will authenticate them using
Microsoft’s Security Groups and they will have the role of either user, technician, or admin. The
first thing any user will see is the home page. The home page consists of a navbar along with big
buttons for less tech savvy users. The options the user has include the following: Create Ticket,
My Tickets, Tutorials, FAQ, Articles. Users can also use a keyword search in the knowledge base
if they are having trouble finding something. The admin and technician role will have more
functionalities/buttons such as Assign Ticket, Create Alert, Assign Category to Ticket. When a
user clicks on Create a Ticket, they are redirected to a page and prompted with a form. Here,
users can fill out the form and upload screenshots of their problems. When a user visits the My
Tickets screen, they can see the history of all their tickets along with date and time stamps. Once
a user clicks on one of those tickets, they can see the details of that particular ticket including the
status. In addition, users can go to the tutorials or articles pages to see media or text based guides
on popular issues.

9.2 Screen Frameworks or Images

17

9.2.1 Home page

9.2.2 My Tickets Page

9.2.3 Individual Ticket Page

18

9.2.4 Notifications Page

9.2.5 Notification Details Page

19

9.2.6 Ticket Log Page - Technician and Admin Only

9.3 User Interface Flow Model
A discussion of screen objects and actions associated with those objects. This should include a
flow diagram of the navigation between different pages.

20

10. Requirements Validation and Verification
Create a table that lists each of the requirements that were specified in the SRS document for this
software.
For each entry in the table list which of the Component Modules and if appropriate which UI
elements and/or low level components satisfies that requirement.
For each entry describe the method for testing that the requirement has been met.

21

11. Glossary
An ordered list of defined terms and concepts used throughout the document. Provide definitions
for any relevant terms, acronyms, and abbreviations that are necessary to understand the SDD
document. This information may be listed here or in a completely separate document. If the
information is not directly listed in this section provide a note that specifies where the
information can be found.

● Application Programming Interface API: Method for when two or more programs
communicate with each other

● ChatBot: Program where a A.I can make automated responses to the user
● Hypertext Transfer Protocol Secure (HTTPS): A type of request made by a web browser

in order to load a webpage. HTTPS is a secure version of Hypertext Transfer Protocol
(HTTP) and is commonly used when transferring private data like logging into an email
or bank account.

● Microsoft Azure: Cloud computing platform that interacts with other microsoft
products/software like PowerApps.

● MySQL: An open source relational database management system (RDMS) used to store
and access data.

● OffBoarding: Process of removing an employee/member from a system. Also involves
revoking/freezing employees access to system database

● Onboarding: Process of integrating a new employee/member into a system
● Open source: Software where the creator allows other users direct access to the source

code so the user can alter and distribute the software for their own purpose
● Power Apps: Program used to develop ticketing system app for mobile and desktop

platforms
● SBPD: Santa Barbara Public Defenders
● Secure Mail Transfer Protocol (SMTP):A type of request that is made when on an email

from one account to another

● Ticketing system: Software program used by a support team for the purpose of keeping
track of problems/requests submitted by users/customers

12. References
<List any other documents or Web addresses to which this SDD refers. These may include other
SDD or SRS documents, user interface style guides, contracts, standards, system requirements
specifications, use case documents, or a vision and scope document. Provide enough information
so that the reader could access a copy of each reference, including title, author, version number,
date, and source or location.>

Brad Appleton <brad@bradapp.net> http://www.bradapp.net

22

http://www.bradapp.net

https://www.cs.purdue.edu/homes/cs307/ExampleDocs/DesignTemplate_Fall08.doc

https://csns.cysun.org/department/cs/project/view?id=7913647

SBPD Website: https://www.countyofsb.org/187/Public-Defender

Software Requirements Document: Software Requirements Document

ZenDesk: https://www.zendesk.com

ServiceNow: https://www.servicenow.com/

23

https://docs.google.com/document/d/1TjQQRAfu2kgExcmaEHB6C4dc67sObsFHBa863Quv7Cw/edit?usp=sharing
https://www.cs.purdue.edu/homes/cs307/ExampleDocs/DesignTemplate_Fall08.doc
https://csns.cysun.org/department/cs/project/view?id=7913647
https://www.countyofsb.org/187/Public-Defender
https://www.zendesk.com
https://www.servicenow.com/

